How can one create LaTeX source for natural deduction proof trees (like those shown here) via Haskell eg using HaTeX? I'd like to emulate LaTeX .sty
s like bussproofs.sty or proof.sty.
I'm using your question as an excuse to improve and demo a Haskell call-tracing library I'm working on. In the context of tracing, an obvious way to create a proof tree is to trace a type checker and then format the trace as a natural-deduction proof. To keep things simple my example logic is the simply-typed lambda calculus (STLC), which corresponds to the implicational fragment of propositional intuitionistic logic.
I am using proofs.sty
, but not via HaTeX
or any other Haskell
Latex library. The Latex for proof trees is very simple and using a
Haskell Latex library would just complicate things.
I've written the proof-tree generation code twice:
in a self-contained way, by writing a type checker that also returns a proof tree;
using my tracing library, by call-tracing a type checker and then post processing the trace into a proof tree.
Since you didn't ask about call-tracing libraries, you may be less interested in the call-trace based version, but I think it's interesting to compare both versions.
Let's start with some output examples first, to see what all this gets us.
The first three examples are motivated
by an axiom system for implicational propositional
calculus;
the first two also happen to correspond to S
and
K
:
The first axiom, K
, with proof terms:
The second axiom, S
, with proof terms, but with premises in the
context, not lambda bound:
The fourth axiom, modus ponens, without proof terms:
The third axiom in that Wikipedia article (Peirce's law) is non-constructive and so we can't prove it here.
For a different kind of example, here's a failed type check of the Y combinator:
The arrows are meant to lead you to the error, which is marked with a
bang (!
).
Now I'll describe the code which generated those examples. The code is from this file unless otherwise noted. I'm not including every line of code here; see that link if you want something you can actually build using GHC 7.6.3.
Most of the code -- the grammar, parser, and pretty printer -- is the same for both versions; only the type checkers and proof-tree generators differ. All of the common code is in the file just referenced.
The STLC grammar in ASCII:
-- Terms
e ::= x | \x:T.e | e e
-- Types
T ::= A | T -> T
-- Contexts
C ::= . | C,x:T
And the corresponding Haskell:
type TmVar = String
type TyVar = String
data Tm = Lam TmVar Ty Tm
| TmVar TmVar
| Tm :@: Tm
deriving Show
data Ty = TyVar TyVar
| Ty :->: Ty
deriving (Eq , Show)
type Ctx = [(TmVar,Ty)]
Both versions implement the same abstract STLC type checker. In ASCII:
(x:T) in C
---------- Axiom
C |- x : T
C,x:T1 |- e : T2
--------------------- -> Introduction
C |- \x:T1.e : T1->T2
C |- e : T1 -> T2 C |- e1 : T1
--------------------------------- -> Elimination
C |- e e1 : T2
The full code for this version is here.
The proof-tree generation happens in the type checker, but the actual
proof-tree generation code is factored out into addProof
and
conclusion
.
-- The mode is 'True' if proof terms should be included.
data R = R { _ctx :: Ctx , _mode :: Bool }
type M a = Reader R a
extendCtx :: TmVar -> Ty -> M a -> M a
extendCtx x t = local extend where
extend r = r { _ctx = _ctx r ++ [(x,t)] }
-- These take the place of the inferred type when there is a type
-- error.
here , there :: String
here = "\\,!"
there = "\\,\\uparrow"
-- Return the inferred type---or error string if type inference
-- fails---and the latex proof-tree presentation of the inference.
--
-- This produces different output than 'infer' in the error case: here
-- all premises are always computed, whereas 'infer' stops at the
-- first failing premise.
inferProof :: Tm -> M (Either String Ty , String)
inferProof tm@(Lam x t e) = do
(et' , p) <- extendCtx x t . inferProof $ e
let et'' = (t :->:) <$> et'
addProof et'' [p] tm
inferProof tm@(TmVar x) = do
mt <- lookup x <$> asks _ctx
let et = maybe (Left here) Right mt
addProof et [] tm
inferProof tm@(e :@: e1) = do
(et , p) <- inferProof e
(et1 , p1) <- inferProof e1
case (et , et1) of
(Right t , Right t1) ->
case t of
t1' :->: t2 | t1' == t1 -> addProof (Right t2) [p , p1] tm
_ -> addProof (Left here) [p , p1] tm
_ -> addProof (Left there) [p , p1] tm
The addProof
corresponds to proofTree
in the other version:
-- Given the inferred type, the proof-trees for all premise inferences
-- (subcalls), and the input term, annotate the inferred type with a
-- result proof tree.
addProof :: Either String Ty -> [String] -> Tm -> M (Either String Ty , String)
addProof et premises tm = do
R { _mode , _ctx } <- ask
let (judgment , rule) = conclusion _mode _ctx tm et
let tex = "\\infer[ " ++ rule ++ " ]{ " ++
judgment ++ " }{ " ++
intercalate " & " premises ++ " }"
return (et , tex)
The code for conclusion
is common to both versions:
conclusion :: Mode -> Ctx -> Tm -> Either String Ty -> (String , String)
conclusion mode ctx tm e = (judgment mode , rule tm)
where
rule (TmVar _) = "\\textsc{Axiom}"
rule (Lam {}) = "\\to \\text{I}"
rule (_ :@: _) = "\\to \\text{E}"
tyOrError = either id pp e
judgment True = pp ctx ++ " \\vdash " ++ pp tm ++ " : " ++ tyOrError
judgment False = ppCtxOnlyTypes ctx ++ " \\vdash " ++ tyOrError
Here the type checker is not even aware of proof-tree generation, and adding call-tracing is just one line.
type Mode = Bool
type Stream = LogStream (ProofTree Mode)
type M a = ErrorT String (ReaderT Ctx (Writer Stream)) a
type InferTy = Tm -> M Ty
infer , infer' :: InferTy
infer = simpleLogger (Proxy::Proxy "infer") ask (return ()) infer'
infer' (TmVar x) = maybe err pure . lookup x =<< ask where
err = throwError $ "Variable " ++ x ++ " not in context!"
infer' (Lam x t e) = (t :->:) <$> (local (++ [(x,t)]) . infer $ e)
infer' (e :@: e1) = do
t <- infer e
t1 <- infer e1
case t of
t1' :->: t2 | t1' == t1 -> pure t2
_ -> throwError $ "Can't apply " ++ show t ++ " to " ++ show t1 ++ "!"
The LogStream
type
and ProofTree
class
are from the library. The LogStream
is the type of log events that
the "magic"
simpleLogger
logs. Note the line
infer = simpleLogger (Proxy::Proxy "infer") ask (return ()) infer'
which defines infer
to be a logged version of infer'
, the actual
type checker. That's all you have to do to trace a monadic function!
I won't get into how simpleLogger
actually works here, but the
result is that each call to infer
gets logged, including the
context, arguments, and return value, and these data get grouped
together with all logged subcalls (here only to infer
). It would be
easy to manually write such logging code for infer
, but it's nice
that with the library you don't have to.
To generate the Latex proof trees, we implement ProofTree
to post
process infer
's call trace. The library provides a proofTree
function that calls the ProofTree
methods and assembles the proof
trees; we just need to specify how the conclusions of the typing
judgments will be formatted:
instance ProofTree Mode (Proxy (SimpleCall "infer" Ctx InferTy ())) where
callAndReturn mode t = conclusion mode ctx tm (Right ty)
where
(tm , ()) = _arg t
ty = _ret t
ctx = _before t
callAndError mode t = conclusion mode ctx tm (Left error)
where
(tm , ()) = _arg' t
how = _how t
ctx = _before' t
error = maybe "\\,!" (const "\\,\\uparrow") how
The pp
calls are to a user defined pretty printer; obviously, the
library can't know how to pretty print your data types.
Because calls can be erroneous -- the library detects errors
-- we have to say how to format
successful and failing calls. Refer to the Y-combinator example above
for an example a failing type check, corresponding to the
callAndError
case here.
The library's proofTree
function
is quite simple: it builds a proofs.sty
proof tree with the current
call as conclusion, and the subcalls as premises:
proofTree :: mode -> Ex2T (LogTree (ProofTree mode)) -> String
proofTree mode (Ex2T t@(CallAndReturn {})) =
"\\infer[ " ++ rule ++ " ]{ " ++ conclusion ++ " }{ " ++ intercalate " & " premises ++ " }"
where
(conclusion , rule) = callAndReturn mode t
premises = map (proofTree mode) (_children t)
proofTree mode (Ex2T t@(CallAndError {})) =
"\\infer[ " ++ rule ++ " ]{ " ++ conclusion ++ " }{ " ++ intercalate " & " premises ++ " }"
where
(conclusion , rule) = callAndError mode t
premises = map (proofTree mode)
(_children' t ++ maybe [] (:[]) (_how t))
I use proofs.sty
in the library because it allows arbitrarily many
premises, although bussproofs.sty
would work for this STLC example
since no rule has more than five premises (the limit for
bussproofs
). Both Latex packages are described
here.
Now we return to code that is common between both versions.
The pretty printer that defines the pp
used above is rather long --
it handles precedence and associativity, and is written in a way that
should be extensible if more terms, e.g. products, are added to the
calculus -- but mostly straightforward. First, we set up a precedence
table and a precedence-and-associativity-aware parenthesizer:
- Precedence: higher value means tighter binding.
type Prec = Double
between :: Prec -> Prec -> Prec
between x y = (x + y) / 2
lowest , highest , precLam , precApp , precArr :: Prec
highest = 1
lowest = 0
precLam = lowest
precApp = between precLam highest
precArr = lowest
-- Associativity: left, none, or right.
data Assoc = L | N | R deriving Eq
-- Wrap a pretty print when the context dictates.
wrap :: Pretty a => Assoc -> a -> a -> String
wrap side ctx x = if prec x `comp` prec ctx
then pp x
else parens . pp $ x
where
comp = if side == assoc x || assoc x == N
then (>=)
else (>)
parens s = "(" ++ s ++ ")"
And then we define the individual pretty printers:
class Pretty t where
pp :: t -> String
prec :: t -> Prec
prec _ = highest
assoc :: t -> Assoc
assoc _ = N
instance Pretty Ty where
pp (TyVar v) = v
pp t@(t1 :->: t2) = wrap L t t1 ++ " {\\to} " ++ wrap R t t2
prec (_ :->: _) = precArr
prec _ = highest
assoc (_ :->: _) = R
assoc _ = N
instance Pretty Tm where
pp (TmVar v) = v
pp (Lam x t e) = "\\lambda " ++ x ++ " {:} " ++ pp t ++ " . " ++ pp e
pp e@(e1 :@: e2) = wrap L e e1 ++ " " ++ wrap R e e2
prec (Lam {}) = precLam
prec (_ :@: _) = precApp
prec _ = highest
assoc (_ :@: _) = L
assoc _ = N
instance Pretty Ctx where
pp [] = "\\cdot"
pp ctx@(_:_) =
intercalate " , " [ x ++ " {:} " ++ pp t | (x,t) <- ctx ]
By adding a "mode" argument, it would be easy to use the same pretty
printer to print plain ASCII, which would be useful with other
call-trace post processors, such as the (unfinished) UnixTree
processor.
A parser is not essential to the example, but of course I did not enter the
example input terms directly as Haskell Tm
s.
Recall the STLC grammar in ASCII:
-- Terms
e ::= x | \x:T.e | e e
-- Types
T ::= A | T -> T
-- Contexts
C ::= . | C,x:T
This grammar is ambiguous: both the term application e e
and function type T -> T
have no associativity given by the
grammar. But in STLC term application is left associative and function
types are right associative, and so the corresponding disambiguated
grammar we actually parse is
-- Terms
e ::= e' | \x:T.e | e e'
e' ::= x | ( e )
-- Types
T ::= T' | T' -> T
T' ::= A | ( T )
-- Contexts
C ::= . | C,x:T
The parser is maybe too simple -- I'm not using a languageDef
and
it's whitespace sensitive -- but it gets the job done:
type P a = Parsec String () a
parens :: P a -> P a
parens = Text.Parsec.between (char '(') (char ')')
tmVar , tyVar :: P String
tmVar = (:[]) <$> lower
tyVar = (:[]) <$> upper
tyAtom , arrs , ty :: P Ty
tyAtom = parens ty
<|> TyVar <$> tyVar
arrs = chainr1 tyAtom arrOp where
arrOp = string "->" *> pure (:->:)
ty = arrs
tmAtom , apps , lam , tm :: P Tm
tmAtom = parens tm
<|> TmVar <$> tmVar
apps = chainl1 tmAtom appOp where
appOp = pure (:@:)
lam = uncurry Lam <$> (char '\\' *> typing)
<*> (char '.' *> tm)
tm = apps <|> lam
typing :: P (TmVar , Ty)
typing = (,) <$> tmVar
<*> (char ':' *> ty)
ctx :: P Ctx
ctx = typing `sepBy` (char ',')
To clarify what the input terms look like, here are the examples from the Makefile:
# OUTFILE CONTEXT TERM
./tm2latex.sh S.ctx 'x:P->Q->R,y:P->Q,z:P' 'xz(yz)'
./tm2latex.sh S.lam '' '\x:P->Q->R.\y:P->Q.\z:P.xz(yz)'
./tm2latex.sh S.err '' '\x:P->Q->R.\y:P->Q.\z:P.xzyz'
./tm2latex.sh K.ctx 'x:P,y:Q' 'x'
./tm2latex.sh K.lam '' '\x:P.\y:Q.x'
./tm2latex.sh I.ctx 'x:P' 'x'
./tm2latex.sh I.lam '' '\x:P.x'
./tm2latex.sh MP.ctx 'x:P,y:P->Q' 'yx'
./tm2latex.sh MP.lam '' '\x:P.\y:P->Q.yx'
./tm2latex.sh ZERO '' '\s:A->A.\z:A.z'
./tm2latex.sh SUCC '' '\n:(A->A)->(A->A).\s:A->A.\z:A.s(nsz)'
./tm2latex.sh ADD '' '\m:(A->A)->(A->A).\n:(A->A)->(A->A).\s:A->A.\z:A.ms(nsz)'
./tm2latex.sh MULT '' '\m:(A->A)->(A->A).\n:(A->A)->(A->A).\s:A->A.\z:A.m(ns)z'
./tm2latex.sh Y.err '' '\f:A->A.(\x:A.f(xx))(\x:A.f(xx))'
./tm2latex.sh Y.ctx 'a:A->(A->A),y:(A->A)->A' '\f:A->A.(\x:A.f(axx))(y(\x:A.f(axx)))'
The ./tm2latex.sh
script just calls pdflatex
on the output of the
Haskell programs described above. The Haskell programs produce the proof
tree and then wrap it in a minimal Latex document:
unlines
[ "\\documentclass[10pt]{article}"
, "\\usepackage{proof}"
, "\\usepackage{amsmath}"
, "\\usepackage[landscape]{geometry}"
, "\\usepackage[cm]{fullpage}"
-- The most slender font I could find:
-- http://www.tug.dk/FontCatalogue/iwonalc/
, "\\usepackage[light,condensed,math]{iwona}"
, "\\usepackage[T1]{fontenc}"
, "\\begin{document}"
, "\\tiny"
, "\\[" ++ tex ++ "\\]"
, "\\end{document}"
]
As you can see, most of the Latex is devoted to making the proof trees as small as possible; I plan to also write an ASCII proof tree post processor, which may be more useful in practice when the examples are larger.
As always, it takes a bit of code to write a parser, type checker, and pretty printer. On top of that, adding proof-tree generation is pretty simple in both versions. This is a fun toy example, but I expect to do something similar in the context of a "real" unification-based type checker for a dependently-typed language; there I expect call tracing and proof-tree generation (in ASCII) to provide significant help in debugging the type checker.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With