I need an algorithm to find shortest path between two points in a map where road distance is indicated by a number.
what is given: Start City A Destination City Z
List of Distances between Cities:
A - B : 10
F - K : 23
R - M : 8
K - O : 40
Z - P : 18
J - K : 25
D - B : 11
M - A : 8
P - R : 15
I thought I could use Dijkstra's algorithm , however it finds shortest distance to all destinations. not just one.
Any suggestion is appreciated.
One common way to find the shortest path in a weighted graph is using Dijkstra's Algorithm. Dijkstra's algorithm finds the shortest path between two vertices in a graph. It can also be used to generate a Shortest Path Tree - which will be the shortest path to all vertices in the graph (from a given source vertex).
And so, the only possible way for BFS (or DFS) to find the shortest path in a weighted graph is to search the entire graph and keep recording the minimum distance from source to the destination vertex.
So if all edges are of same weight, we can use BFS to find the shortest path. For this problem, we can modify the graph and split all edges of weight 2 into two edges of weight 1 each. We can use BFS to find the shortest path in the modified graph.
(b) T F [3 points] If all edges in a graph have distinct weights, then the shortest path between two vertices is unique. Solution: FALSE. Even if no two edges have the same weight, there could be two paths with the same weight.
Like SplinterReality said: There's no reason not to use Dijkstra's algorithm here.
The code below I nicked from here and modified it to solve the example in the question.
import java.util.PriorityQueue;
import java.util.List;
import java.util.ArrayList;
import java.util.Collections;
class Vertex implements Comparable<Vertex>
{
public final String name;
public Edge[] adjacencies;
public double minDistance = Double.POSITIVE_INFINITY;
public Vertex previous;
public Vertex(String argName) { name = argName; }
public String toString() { return name; }
public int compareTo(Vertex other)
{
return Double.compare(minDistance, other.minDistance);
}
}
class Edge
{
public final Vertex target;
public final double weight;
public Edge(Vertex argTarget, double argWeight)
{ target = argTarget; weight = argWeight; }
}
public class Dijkstra
{
public static void computePaths(Vertex source)
{
source.minDistance = 0.;
PriorityQueue<Vertex> vertexQueue = new PriorityQueue<Vertex>();
vertexQueue.add(source);
while (!vertexQueue.isEmpty()) {
Vertex u = vertexQueue.poll();
// Visit each edge exiting u
for (Edge e : u.adjacencies)
{
Vertex v = e.target;
double weight = e.weight;
double distanceThroughU = u.minDistance + weight;
if (distanceThroughU < v.minDistance) {
vertexQueue.remove(v);
v.minDistance = distanceThroughU ;
v.previous = u;
vertexQueue.add(v);
}
}
}
}
public static List<Vertex> getShortestPathTo(Vertex target)
{
List<Vertex> path = new ArrayList<Vertex>();
for (Vertex vertex = target; vertex != null; vertex = vertex.previous)
path.add(vertex);
Collections.reverse(path);
return path;
}
public static void main(String[] args)
{
// mark all the vertices
Vertex A = new Vertex("A");
Vertex B = new Vertex("B");
Vertex D = new Vertex("D");
Vertex F = new Vertex("F");
Vertex K = new Vertex("K");
Vertex J = new Vertex("J");
Vertex M = new Vertex("M");
Vertex O = new Vertex("O");
Vertex P = new Vertex("P");
Vertex R = new Vertex("R");
Vertex Z = new Vertex("Z");
// set the edges and weight
A.adjacencies = new Edge[]{ new Edge(M, 8) };
B.adjacencies = new Edge[]{ new Edge(D, 11) };
D.adjacencies = new Edge[]{ new Edge(B, 11) };
F.adjacencies = new Edge[]{ new Edge(K, 23) };
K.adjacencies = new Edge[]{ new Edge(O, 40) };
J.adjacencies = new Edge[]{ new Edge(K, 25) };
M.adjacencies = new Edge[]{ new Edge(R, 8) };
O.adjacencies = new Edge[]{ new Edge(K, 40) };
P.adjacencies = new Edge[]{ new Edge(Z, 18) };
R.adjacencies = new Edge[]{ new Edge(P, 15) };
Z.adjacencies = new Edge[]{ new Edge(P, 18) };
computePaths(A); // run Dijkstra
System.out.println("Distance to " + Z + ": " + Z.minDistance);
List<Vertex> path = getShortestPathTo(Z);
System.out.println("Path: " + path);
}
}
The code above produces:
Distance to Z: 49.0
Path: [A, M, R, P, Z]
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With