I want to iteratively fit a curve to data in python with the following approach:
I can fit a polynomial curve as follows:
vals = array([0.00441025, 0.0049001 , 0.01041189, 0.47368389, 0.34841961,
0.3487533 , 0.35067096, 0.31142986, 0.3268407 , 0.38099566,
0.3933048 , 0.3479948 , 0.02359819, 0.36329588, 0.42535543,
0.01308297, 0.53873956, 0.6511364 , 0.61865282, 0.64750302,
0.6630047 , 0.66744816, 0.71759617, 0.05965622, 0.71335208,
0.71992683, 0.61635697, 0.12985441, 0.73410642, 0.77318621,
0.75675988, 0.03003641, 0.77527201, 0.78673995, 0.05049178,
0.55139476, 0.02665514, 0.61664748, 0.81121749, 0.05521697,
0.63404375, 0.32649395, 0.36828268, 0.68981099, 0.02874863,
0.61574739])
x_values = np.linspace(0, 1, len(vals))
poly_degree = 3
coeffs = np.polyfit(x_values, vals, poly_degree)
poly_eqn = np.poly1d(coeffs)
y_hat = poly_eqn(x_values)
How do I do steps 2 and 3?
With the eliminating points too far from an expected solution, you are probably looking for RANSAC (RANdom SAmple Consensus), which is fitting a curve (or any other function) to data within certain bounds, like your case with 2*STD.
You can use scikit-learn RANSAC estimator which is well aligned with included regressors such as LinearRegression. For your polynomial case you need to define your own regression class:
from sklearn.metrics import mean_squared_error
class PolynomialRegression(object):
def __init__(self, degree=3, coeffs=None):
self.degree = degree
self.coeffs = coeffs
def fit(self, X, y):
self.coeffs = np.polyfit(X.ravel(), y, self.degree)
def get_params(self, deep=False):
return {'coeffs': self.coeffs}
def set_params(self, coeffs=None, random_state=None):
self.coeffs = coeffs
def predict(self, X):
poly_eqn = np.poly1d(self.coeffs)
y_hat = poly_eqn(X.ravel())
return y_hat
def score(self, X, y):
return mean_squared_error(y, self.predict(X))
and then you can use RANSAC
from sklearn.linear_model import RANSACRegressor
ransac = RANSACRegressor(PolynomialRegression(degree=poly_degree),
residual_threshold=2 * np.std(y_vals),
random_state=0)
ransac.fit(np.expand_dims(x_vals, axis=1), y_vals)
inlier_mask = ransac.inlier_mask_
Note, the X variable is transformed to 2d array as it is required by sklearn RANSAC implementation and in our custom class flatten back because of numpy polyfit function works with 1d array.
y_hat = ransac.predict(np.expand_dims(x_vals, axis=1))
plt.plot(x_vals, y_vals, 'bx', label='input samples')
plt.plot(x_vals[inlier_mask], y_vals[inlier_mask], 'go', label='inliers (2*STD)')
plt.plot(x_vals, y_hat, 'r-', label='estimated curve')
moreover, playing with the polynomial order and residual distance I got following results with degree=4 and range 1*STD
Another option is to use higher order regressor like Gaussian process
from sklearn.gaussian_process import GaussianProcessRegressor
ransac = RANSACRegressor(GaussianProcessRegressor(),
residual_threshold=np.std(y_vals))
Talking about generalization to DataFrame, you just need to set that all columns except one are features and the one remaining is the output, like here:
import pandas as pd
df = pd.DataFrame(np.array([x_vals, y_vals]).T)
ransac.fit(df[df.columns[:-1]], df[df.columns[-1]])
y_hat = ransac.predict(df[df.columns[:-1]])
it doesn't look like you'll get anything worthwhile following that procedure, there are much better techniques for handling unexpected data. googling for "outlier detection" would be a good start.
with that said, here's how to answer your question:
start by pulling in libraries and getting some data:
import matplotlib.pyplot as plt
import numpy as np
Y = np.array([
0.00441025, 0.0049001 , 0.01041189, 0.47368389, 0.34841961,
0.3487533 , 0.35067096, 0.31142986, 0.3268407 , 0.38099566,
0.3933048 , 0.3479948 , 0.02359819, 0.36329588, 0.42535543,
0.01308297, 0.53873956, 0.6511364 , 0.61865282, 0.64750302,
0.6630047 , 0.66744816, 0.71759617, 0.05965622, 0.71335208,
0.71992683, 0.61635697, 0.12985441, 0.73410642, 0.77318621,
0.75675988, 0.03003641, 0.77527201, 0.78673995, 0.05049178,
0.55139476, 0.02665514, 0.61664748, 0.81121749, 0.05521697,
0.63404375, 0.32649395, 0.36828268, 0.68981099, 0.02874863,
0.61574739])
X = np.linspace(0, 1, len(Y))
next do an initial plot of the data:
plt.plot(X, Y, '.')
as this lets you see what we're dealing with and whether a polynomial would ever be a good fit --- short answer is that this method isn't going to get very far with this sort of data
at this point we should stop, but to answer the question I'll go on, mostly following your polynomial fitting code:
poly_degree = 5
sd_cutoff = 1 # 2 keeps everything
coeffs = np.polyfit(X, Y, poly_degree)
poly_eqn = np.poly1d(coeffs)
Y_hat = poly_eqn(X)
delta = Y - Y_hat
sd_p = np.std(delta)
ok = abs(delta) < sd_p * sd_cutoff
hopefully this makes sense, I use a higher degree polynomial and only cutoff at 1SD because otherwise nothing will be thrown away. the ok
array contains True
values for those points that are within sd_cutoff
standard deviations
to check this, I'd then do another plot. something like:
plt.scatter(X, Y, color=np.where(ok, 'k', 'r'))
plt.fill_between(
X,
Y_hat - sd_p * sd_cutoff,
Y_hat + sd_p * sd_cutoff,
color='#00000020')
plt.plot(X, Y_hat)
which gives me:
so the black dots are the points to keep (i.e. X[ok]
gives me these back, and np.where(ok)
gives you indicies).
you can play around with the parameters, but you probably want a distribution with fatter tails (e.g. a Student's T-distribution) but, as I said above, using Google for outlier detection would be my suggestion
There are three functions need to solve this. First a line fitting function is necesary to fit a line to a set of points:
def fit_line(x_values, vals, poly_degree):
coeffs = np.polyfit(x_values, vals, poly_degree)
poly_eqn = np.poly1d(coeffs)
y_hat = poly_eqn(x_values)
return poly_eqn, y_hat
We need to know the standard deviation from the points to the line. This function computes that standard deviation:
def compute_sd(x_values, vals, y_hat):
distances = []
for x,y, y1 in zip(x_values, vals, y_hat): distances.append(abs(y - y1))
return np.std(distances)
Finally, we need to compare the distance from a point to the line. The point needs to be thrown out if the distance from the point to the line is greater than two times the standard deviation.
def compare_distances(x_values, vals):
new_vals, new_x_vals = [],[]
for x,y in zip(x_values, vals):
y1 = np.polyval(poly_eqn, x)
distance = abs(y - y1)
if distance < 2*sd:
plt.plot((x,x),(y,y1), c='g')
new_vals.append(y)
new_x_vals.append(x)
else:
plt.plot((x,x),(y,y1), c='r')
plt.scatter(x,y, c='r')
return new_vals, new_x_vals
As you can see in the following graphs, this method does not work well for fitting a line to data that has a lot of outliers. All the points end up getting eliminated for being too far from the fitted line.
while len(vals)>0:
poly_eqn, y_hat = fit_line(x_values, vals, poly_degree)
plt.scatter(x_values, vals)
plt.plot(x_values, y_hat)
sd = compute_sd(x_values, vals, y_hat)
new_vals, new_x_vals = compare_distances(x_values, vals)
plt.show()
vals, x_values = np.array(new_vals), np.array(new_x_vals)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With