With a datetime index to a Pandas dataframe, it is easy to get a range of dates:
df[datetime(2018,1,1):datetime(2018,1,10)]
Filtering is straightforward too:
df[ (df['column A'] = 'Done') & (df['column B'] < 3.14 )]
But what is the best way to simultaneously filter by range of dates and any other non-date criteria?
c0 = df.index.to_series().between('2018-01-01', '2018-01-10')
c1 = df['column A'] == 'Done'
c2 = df['column B'] < 3.14
df[c0 & c1 & c2]
column A column B
2018-01-04 Done 2.533385
2018-01-06 Done 2.789072
2018-01-08 Done 2.230017
np.random.seed([3, 1415])
df = pd.DataFrame({
'column A': ['Done', 'Not Done'] * 10,
'column B': np.random.randn(20) + np.pi
}, pd.date_range('2017-12-25', periods=20))
df
column A column B
2017-12-25 Done 1.011868
2017-12-26 Not Done 1.873127
2017-12-27 Done 1.171093
2017-12-28 Not Done 0.882538
2017-12-29 Done 2.792306
2017-12-30 Not Done 3.114638
2017-12-31 Done 3.457829
2018-01-01 Not Done 3.490375
2018-01-02 Done 3.856957
2018-01-03 Not Done 3.912356
2018-01-04 Done 2.533385
2018-01-05 Not Done 3.493983
2018-01-06 Done 2.789072
2018-01-07 Not Done 2.725724
2018-01-08 Done 2.230017
2018-01-09 Not Done 2.999055
2018-01-10 Done 3.888432
2018-01-11 Not Done 1.637436
2018-01-12 Done 3.752955
2018-01-13 Not Done 3.541812
If there is multiple boolean masks is possible use np.logical_and.reduce
:
m1 = df.index > '2018-01-01'
m2 = df.index < '2018-01-10'
m3 = df['column A'] == 'Done'
m4 = df['column B'] < 3.14
#piRSquared's data sample
df = df[np.logical_and.reduce([m1, m2, m3, m4])]
print (df)
column A column B
2018-01-04 Done 2.533385
2018-01-06 Done 2.789072
2018-01-08 Done 2.230017
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.random((200,3)))
df['date'] = pd.date_range('2018-1-1', periods=200, freq='D')
df = df.set_index(['date'])
print(df.loc['2018-2-1':'2018-2-10'])
Hope! it will helpful
I did this below to filter for both dataframes to have the same date
corn_url = 'https://fred.stlouisfed.org/graph/fredgraph.csv?bgcolor=%23e1e9f0&chart_type=line&drp=0&fo=open%20sans&graph_bgcolor=%23ffffff&height=450&mode=fred&recession_bars=on&txtcolor=%23444444&ts=12&tts=12&width=1168&nt=0&thu=0&trc=0&show_legend=yes&show_axis_titles=yes&show_tooltip=yes&id=WPU012202&scale=left&cosd=1971-01-01&coed=2020-04-01&line_color=%234572a7&link_values=false&line_style=solid&mark_type=none&mw=3&lw=2&ost=-99999&oet=99999&mma=0&fml=a&fq=Monthly&fam=avg&fgst=lin&fgsnd=2009-06-01&line_index=1&transformation=lin&vintage_date=2020-06-09&revision_date=2020-06-09&nd=1971-01-01'
wheat_url ='https://fred.stlouisfed.org/graph/fredgraph.csv?bgcolor=%23e1e9f0&chart_type=line&drp=0&fo=open%20sans&graph_bgcolor=%23ffffff&height=450&mode=fred&recession_bars=on&txtcolor=%23444444&ts=12&tts=12&width=1168&nt=0&thu=0&trc=0&show_legend=yes&show_axis_titles=yes&show_tooltip=yes&id=WPU0121&scale=left&cosd=1947-01-01&coed=2020-04-01&line_color=%234572a7&link_values=false&line_style=solid&mark_type=none&mw=3&lw=2&ost=-99999&oet=99999&mma=0&fml=a&fq=Monthly&fam=avg&fgst=lin&fgsnd=2009-06-01&line_index=1&transformation=lin&vintage_date=2020-06-09&revision_date=2020-06-09&nd=1947-01-01'
corn = pd.read_csv(corn_url,index_col=0,parse_dates=True)
wheat = pd.read_csv(wheat_url,index_col=0, parse_dates=True)
corn.head()
PP Index 1982
DATE
1971-01-01 63.4
1971-02-01 63.6
1971-03-01 62.0
1971-04-01 60.8
1971-05-01 60.2
wheat.head()
PP Index 1982
DATE
1947-01-01 53.1
1947-02-01 56.5
1947-03-01 68.0
1947-04-01 66.0
1947-05-01 66.7
wheat = wheat[wheat.index > '1970-12-31']
wheat.head()
PP Index 1982
DATE
1971-01-01 42.6
1971-02-01 42.6
1971-03-01 41.4
1971-04-01 41.7
1971-05-01 41.8
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With