I'm used to contrast enhancement in Matlab using imadjust
. Is there any equivalent function in OpenCV?
A google search gives the OpenCV documentation on brightness and contrast enhancement but it uses for loops which might be inefficient. Even if we make it efficient by using Matrix expressions, it is not equivalent to what imadjust does.
Is there any in-built function in OpenCV or any efficient method for the task?
I saw related posts but either they link to the OpenCV doc I mentioned above or they suggest Histogram Equalization and thresholding. I prefer imadjust
to histogram equalization and thresholding doesn't seem to perform contrast enhancement as such.
Any help on this is appreciated.
There's no builtin solution in OpenCV to perform histogram stretching, but you can do it easily in a loop.
imadjust
allows to select a tolerance for upper and lower bounds, or the bounds directly, so you need a little more logic than a simple for loop.
You can use the example below as a reference while implementing your own:
#include <opencv2\opencv.hpp>
#include <vector>
#include <algorithm>
using namespace std;
using namespace cv;
void imadjust(const Mat1b& src, Mat1b& dst, int tol = 1, Vec2i in = Vec2i(0, 255), Vec2i out = Vec2i(0, 255))
{
// src : input CV_8UC1 image
// dst : output CV_8UC1 imge
// tol : tolerance, from 0 to 100.
// in : src image bounds
// out : dst image buonds
dst = src.clone();
tol = max(0, min(100, tol));
if (tol > 0)
{
// Compute in and out limits
// Histogram
vector<int> hist(256, 0);
for (int r = 0; r < src.rows; ++r) {
for (int c = 0; c < src.cols; ++c) {
hist[src(r,c)]++;
}
}
// Cumulative histogram
vector<int> cum = hist;
for (int i = 1; i < hist.size(); ++i) {
cum[i] = cum[i - 1] + hist[i];
}
// Compute bounds
int total = src.rows * src.cols;
int low_bound = total * tol / 100;
int upp_bound = total * (100-tol) / 100;
in[0] = distance(cum.begin(), lower_bound(cum.begin(), cum.end(), low_bound));
in[1] = distance(cum.begin(), lower_bound(cum.begin(), cum.end(), upp_bound));
}
// Stretching
float scale = float(out[1] - out[0]) / float(in[1] - in[0]);
for (int r = 0; r < dst.rows; ++r)
{
for (int c = 0; c < dst.cols; ++c)
{
int vs = max(src(r, c) - in[0], 0);
int vd = min(int(vs * scale + 0.5f) + out[0], out[1]);
dst(r, c) = saturate_cast<uchar>(vd);
}
}
}
int main()
{
Mat3b img = imread("path_to_image");
Mat1b gray;
cvtColor(img, gray, COLOR_RGB2GRAY);
Mat1b adjusted;
imadjust(gray, adjusted);
// int low_in, high_in, low_out, high_out
// imadjust(gray, adjusted, 0, Vec2i(low_in, high_in), Vec2i(low_out, high_out));
return 0;
}
Input image:
Output adjusted image:
There is a implementation of imadjust
and stretchlim
here:
https://github.com/joshdoe/opencv/blob/1d319f683f6b9a8b0c7cbe2abdc9664f0dac919f/modules/imgproc/src/imadjust.cpp
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With