Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Is there an instance of Monad but not of MonadFix?

The question is mostly in the title. It seems like mfix can be defined for any monadic computation, even though it might diverge:

mfix :: (a -> m a) -> m a
mfix f = fix (join . liftM f)

What is wrong with this construction? Also, why are the Monad and MonadFix typeclasses separate (i.e. what type has an instance of Monad but not of MonadFix)?

like image 573
Mokosha Avatar asked Sep 12 '14 18:09

Mokosha


2 Answers

The left shrinking (or tightening) law says that

mfix (\x -> a >>= \y -> f x y)  =  a >>= \y -> mfix (\x -> f x y)

In particular this means that

mfix (\x -> a' >> f x)  =  a' >> mfix f

which means that the monadic action inside mfix must be evaluated exactly once. This is one of the main properties of MonadFix which your version fails to satisfy.

Consider this example that creates a cyclic mutable list (let's disregard the fact that you could do that without mfix thanks to mutability):

import Control.Monad
import Control.Monad.Fix
import Data.IORef

data MList a = Nil | Cons a (IORef (MList a))

mrepeat :: a -> IO (MList a)
mrepeat x = mfix (liftM (Cons x) . newIORef)

main = do
    (Cons x _) <- mrepeat 1
    print x

With your variant of mfix the call to mrepeat never finishes, as you're calling the inner part with newIORef indefinitely.

like image 94
Petr Avatar answered Sep 28 '22 09:09

Petr


Your definition of mfix is not guaranteed to be equivalent to the standard one. In fact, at least in the list monad it is stricter:

> take 1 $ mfix (\x -> [1,x])
[1]
> let mfix2 :: Monad m => (a -> m a) -> m a; mfix2 f = fix (join . liftM f)
> take 1 $ mfix2 (\x -> [1,x])
Interrupted.
like image 38
chi Avatar answered Sep 28 '22 07:09

chi