Here's what I want to do; posting the whole code because it's not too long and also to demonstrate the specific task I'm trying to solve. Basically, I need a way to iterate values from parameter pack by index (the index part is important, even though it's not required in this example).
#include <iostream>
#include <tuple>
#include <type_traits>
template <int First, int Last, typename Functor>
constexpr void static_for(Functor&& f)
{
if constexpr (First < Last)
{
f(std::integral_constant<int, First>{});
static_for<First + 1, Last, Functor>(std::forward<Functor>(f));
}
}
template <size_t index, typename... Args>
auto value_by_index(Args&&... args) noexcept {
return std::get<index>(std::forward_as_tuple(std::forward<Args>(args)...));
}
template <typename... ValueTypes>
void traverse(ValueTypes... values)
{
static_for<0, sizeof...(ValueTypes)>([&](int i) {
auto v = value_by_index<static_cast<size_t>(i), ValueTypes...>(values...);
std::cout << v << std::endl;
});
}
int main()
{
traverse(0.0f, 1, 3.33, "str");
return 0;
}
The compiler error, of course, is:
<source>:24:71: error: 'i' is not a constant expression
If lambdas could have explicit template arguments, i
would be such an argument and it would be obvious to the compiler that it's known at compile time. But that's not how lambdas work.
If you want to treat it as an X-Y problem, I suppose I don't specifically need to call a lambda inside my static_for
, but I do need to call some piece of code that can access parameter pack(s) of traverse
by index, and if traverse
was a member function, I need to have access to its this
.
Try it online: https://godbolt.org/z/eW4rnm
Visual Studio 2017 version 15.3 and later (available in /std:c++17 mode and later): A lambda expression may be declared as constexpr or used in a constant expression when the initialization of each data member that it captures or introduces is allowed within a constant expression.
A capture clause of lambda definition is used to specify which variables are captured and whether they are captured by reference or by value. An empty capture closure [ ], indicates that no variables are used by lambda which means it can only access variables that are local to it.
C++ Lambda expression allows us to define anonymous function objects (functors) which can either be used inline or passed as an argument. Lambda expression was introduced in C++11 for creating anonymous functors in a more convenient and concise way.
It is a convenient way to define an anonymous function object or functor. It is convenient because we can define it locally where we want to call it or pass it to a function as an argument. Lambda is easy to read too because we can keep everything in the same place.
Use a generic lambda and a constexpr conversion operator c++17:
template <typename... ValueTypes>
void traverse(ValueTypes... values)
{
static_for<0, sizeof...(ValueTypes)>([&](auto I)
// ~~~^
{
auto v = value_by_index<I>(values...);
// ~^~
std::cout << v << std::endl;
});
}
DEMO
Use a template parameter list for the lambda expression c++20:
template <typename... ValueTypes>
void traverse(ValueTypes... values)
{
static_for<0, sizeof...(ValueTypes)>([&]<int I>(std::integral_constant<int, I>)
// ~~~~^ ~^~
{
auto v = value_by_index<I>(values...);
// ~^~
std::cout << v << std::endl;
});
}
DEMO 2
It's too late to play?
Basically, I need a way to iterate values from parameter pack by index (the index part is important, even though it's not required in this example).
Sorry but... what about the good old use of std::make_index_sequence
and std::index_sequence
?
Maintaining your value_by_index()
, I propose the following C++14 solution based on traverse()
with traverse_helper()
template <typename F, std::size_t ... Is, typename ... VTs>
void traverse_helper (F f, std::index_sequence<Is...>, VTs ... vs)
{
using unused = int[];
(void)unused { 0, (f(value_by_index<Is>(vs...)), 0)... };
}
template <typename F, typename ... VTs>
void traverse (F f, VTs ... vs)
{ traverse_helper(f, std::make_index_sequence<sizeof...(VTs)>{}, vs...); }
Observe that I've passed also the callable as parameter.
If you can use C++17 (as you tagged), traverse_helper()
simply become
template <typename F, std::size_t ... Is, typename ... VTs>
void traverse_helper (F f, std::index_sequence<Is...>, VTs ... vs)
{ (f(value_by_index<Is>(vs...)), ...); }
You can call traverse()
as follows
traverse([](auto x){ std::cout << x << std::endl; },
0.0f, 1, 3.33, "str");
The following is a full C++14 compiling example
#include <iostream>
#include <tuple>
#include <type_traits>
template <std::size_t I, typename ... As>
auto value_by_index (As && ... as) noexcept
{ return std::get<I>(std::forward_as_tuple(std::forward<As>(as)...)); }
template <typename F, std::size_t ... Is, typename ... VTs>
void traverse_helper (F f, std::index_sequence<Is...>, VTs ... vs)
{
using unused = int[];
(void)unused { 0, (f(value_by_index<Is>(vs...)), 0)... };
}
template <typename F, typename ... VTs>
void traverse (F f, VTs ... vs)
{ traverse_helper(f, std::make_index_sequence<sizeof...(VTs)>{}, vs...); }
int main ()
{
traverse([](auto x){ std::cout << x << std::endl; },
0.0f, 1, 3.33, "str");
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With