Is there a 'clamp' or equivalent method or sub in Perl6?
eg
my $range= (1.0 .. 9.9)
my $val=15.3;
my $clamped=$range.clamp($val);
# $clamped would be 9.9
$val= -1.3;
$clamped=$range.clamp($val);
# $clamped would be 1.0
Another tact you might like to explore is using a Proxy, which allows you to define "hooks" when fetching or storing a value from a container
sub limited-num(Range $range) is rw {
my ($min, $max) = $range.minmax;
my Numeric $store = $min;
Proxy.new(
FETCH => method () { $store },
STORE => method ($new) {
$store = max($min, min($max, $new));
}
)
}
# Note the use of binding operator `:=`
my $ln := limited-num(1.0 .. 9.9);
say $ln; # OUTPUT: 1
$ln += 4.2;
say $ln; # OUTPUT: 5.2
$ln += 100;
say $ln; # OUTPUT: 9.9
$ln -= 50;
say $ln; # OUTPUT: 1
$ln = 0;
say $ln; # OUTPUT: 1
This particular limited-num
will initialise with it's min value, but you can also set it at declaration
my $ln1 := limited-num(1.0 .. 9.9) = 5.5;
say $ln1; # OUTPUT 5.5;
my $ln2 := limited-num(1.0 .. 9.9) = 1000;
say $ln2; # OUTPUT 9.9
I don't think so. So, perhaps:
multi clamp ($range, $value) {
given $range {
return .max when (($value cmp .max) === More);
return .min when (($value cmp .min) === Less);
}
return $value
}
my $range = (1.0 .. 9.9);
say $range.&clamp: 15.3; # 9.9
say $range.&clamp: -1.3; # 1
my $range = 'b'..'y';
say $range.&clamp: 'a'; # b
say $range.&clamp: 'z'; # y
The MOP allows direct exploration of the objects available in your P6 system. A particularly handy metamethod is .^methods
which works on most built in objects:
say Range.^methods; # (new excludes-min excludes-max infinite is-int ...
By default this includes just the methods defined in the Range
class, not the methods it inherits. (To get them all you could use say Range.^methods: :all
. That'll net you a much bigger list.)
When I just tried it I found it also included a lot of methods unhelpfully named Method+{is-nodal}.new
. So maybe use this instead:
say Range.^methods.grep: * !~~ / 'is-nodal' /;
This netted:
(new excludes-min excludes-max infinite is-int elems iterator
flat reverse first bounds int-bounds fmt ASSIGN-POS roll pick
Capture push append unshift prepend shift pop sum rand in-range
hyper lazy-if lazy item race of is-lazy WHICH Str ACCEPTS perl
Numeric min max BUILDALL)
That's what I used to lead me to my solution above; I sort of know the methods but use .^methods
to remind me.
Another way to explore what's available is doc, eg the official doc's Range
page. That netted me:
ACCEPTS min excludes-min max excludes-max bounds
infinite is-int int-bounds minmax elems list flat
pick roll sum reverse Capture rand
Comparing these two lists, sorted and bagged, out of curiosity:
say
<ACCEPTS ASSIGN-POS BUILDALL Capture Numeric Str WHICH append
bounds elems excludes-max excludes-min first flat fmt hyper
in-range infinite int-bounds is-int is-lazy item iterator
lazy lazy-if max min new of perl pick pop prepend push
race rand reverse roll shift sum unshift>.Bag
∩
<ACCEPTS Capture bounds elems excludes-max excludes-min flat
infinite int-bounds is-int list max min minmax pick
rand reverse roll sum>.Bag
displays:
Bag(ACCEPTS, Capture, bounds, elems, excludes-max, excludes-min,
flat, infinite, int-bounds, is-int, max, min, pick,
rand, reverse, roll, sum)
So for some reason, list
, minmax
, and sum
are documented as Range
methods but are not listed by my .^methods
call. Presumably they're called Method+{is-nodal}.new
. Hmm.
say Range.^lookup('minmax'); # Method+{is-nodal}.new
say Range.^lookup('minmax').name; # minmax
Yep. Hmm. So I could have written:
say Range.^methods>>.name.sort;
(ACCEPTS ASSIGN-POS AT-POS BUILDALL Bag BagHash Capture EXISTS-POS
Mix MixHash Numeric Set SetHash Str WHICH append bounds elems
excludes-max excludes-min first flat fmt hyper in-range infinite
int-bounds is-int is-lazy item iterator lazy lazy-if list max min
minmax new of perl pick pop prepend push race rand reverse roll
shift sum unshift)
Anyhow, hope that's helpful.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With