Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Is Specification Pattern Pointless?

I'm just wondering if Specification pattern is pointless, given following example:

Say you want to check if a Customer has enough balance in his/her account, you would create a specification something like:

new CustomerHasEnoughMoneyInTheirAccount().IsSatisfiedBy(customer)

However, what I'm wondering is I can achieve the same "benefits" of Specification pattern (such as only needing to change the business rules in on place) by using Property getter in the Customer class like this:

public class Customer
{

     public double Balance;

     public bool HasEnoughMoney
     {
          get { return this.Balance > 0; }
     }
}

From client code:

customer.HasEnoughMoney

So my question really is; what is the difference between using the property getter to wrap the business logic, and creating Specification class?

Thank you all in advance!

like image 596
Henry Aung Avatar asked Dec 15 '10 02:12

Henry Aung


1 Answers

In the general sense, a Specification object is just a predicate wrapped up in an object. If a predicate is very commonly used with a class, it might make sense to Move Method the predicate into the class it applies to.

This pattern really comes into its own when you're building up something more complicated like this:

var spec = new All(new CustomerHasFunds(500.00m),
                   new CustomerAccountAgeAtLeast(TimeSpan.FromDays(180)),
                   new CustomerLocatedInState("NY"));

and passing it around or serializing it; it can make even more sense when you're providing some sort of "specification builder" UI.

That said, C# provides more idiomatic ways to express these sorts of things, such as extension methods and LINQ:

var cutoffDate = DateTime.UtcNow - TimeSpan.FromDays(180); // captured
Expression<Func<Customer, bool>> filter =
    cust => (cust.AvailableFunds >= 500.00m &&
             cust.AccountOpenDateTime >= cutoffDate &&
             cust.Address.State == "NY");

I've been playing around with some experimental code that implements Specifications in terms of Expressions, with very simple static builder methods.

public partial class Customer
{
    public static partial class Specification
    {
        public static Expression<Func<Customer, bool>> HasFunds(decimal amount)
        {
            return c => c.AvailableFunds >= amount;
        }

        public static Expression<Func<Customer, bool>> AccountAgedAtLeast(TimeSpan age)
        {
            return c => c.AccountOpenDateTime <= DateTime.UtcNow - age;
        }


        public static Expression<Func<Customer, bool>> LocatedInState(string state)
        {
            return c => c.Address.State == state;
        }
    }
}

That said, this is a whole load of boilerplate that doesn't add value! These Expressions only look at public properties, so one could just as easily use a plain old lambda! Now, if one of these Specifications needs to access non-public state, we really do need a builder method with access to non-public state. I'll use lastCreditScore as an example here.

public partial class Customer
{
    private int lastCreditScore;

    public static partial class Specification
    { 
        public static Expression<Func<Customer, bool>> LastCreditScoreAtLeast(int score)
        {
            return c => c.lastCreditScore >= score;
        }
    }
}

We also need a way to make a composite of these Specifications - in this case, a composite that requires all children to be true:

public static partial class Specification
{
    public static Expression<Func<T, bool>> All<T>(params Expression<Func<T, bool>>[] tail)
    {
        if (tail == null || tail.Length == 0) return _0 => true;
        var param = Expression.Parameter(typeof(T), "_0");
        var body = tail.Reverse()
            .Skip(1)
            .Aggregate((Expression)Expression.Invoke(tail.Last(), param),
                       (current, item) =>
                           Expression.AndAlso(Expression.Invoke(item, param),
                                              current));

        return Expression.Lambda<Func<T, bool>>(body, param);
    }
}

I guess part of the downside to this is it can result in complicated Expression trees. For example, constructing this:

 var spec = Specification.All(Customer.Specification.HasFunds(500.00m),
                              Customer.Specification.AccountAgedAtLeast(TimeSpan.FromDays(180)),
                              Customer.Specification.LocatedInState("NY"),
                              Customer.Specification.LastCreditScoreAtLeast(667));

produces an Expression tree that looks like this. (These are slightly formatted versions of what ToString() returns when called on the Expression - note that you wouldn't be able to see the structure of the expression at all if you had only a simple delegate! A couple of notes: a DisplayClass is a compiler-generated class that holds local variables captured in a closure, to deal with the upwards funarg problem; and the dumped Expression uses a single = sign to represent equality comparison, rather than C#'s typical ==.)

_0 => (Invoke(c => (c.AvailableFunds >= value(ExpressionExperiment.Customer+Specification+<>c__DisplayClass0).amount),_0)
       && (Invoke(c => (c.AccountOpenDateTime <= (DateTime.UtcNow - value(ExpressionExperiment.Customer+Specification+<>c__DisplayClass2).age)),_0) 
           && (Invoke(c => (c.Address.State = value(ExpressionExperiment.Customer+Specification+<>c__DisplayClass4).state),_0)
               && Invoke(c => (c.lastCreditScore >= value(ExpressionExperiment.Customer+Specification+<>c__DisplayClass6).score),_0))))

Messy! Lots of invocation of immediate lambdas and retained references to the closures created in the builder methods. By substituting closure references with their captured values and β-reducing the nested lambdas (I also α-converted all parameter names to unique generated symbols as an intermediate step to simplify β-reduction), a much simpler Expression tree results:

_0 => ((_0.AvailableFunds >= 500.00)
       && ((_0.AccountOpenDateTime <= (DateTime.UtcNow - 180.00:00:00))
           && ((_0.Address.State = "NY")
               && (_0.lastCreditScore >= 667))))

These Expression trees can then be further combined, compiled into delegates, pretty-printed, edited, passed to LINQ interfaces that understand Expression trees (such as those provided by EF), or what have you.

On a side note, I built a silly little micro-benchmark and actually discovered that closure reference elimination had a remarkable performance impact on the speed of evaluation of the example Expression when compiled to a delegate - it cut the evaluation time nearly in half(!), from 134.1ns to 70.5ns per call on the machine I happen to be sitting in front of. On the other hand, β-reduction made no detectable difference, perhaps because compilation does that anyway. In any case, I doubt a conventional Specification class set could reach that kind of evaluation speed for a composite of four conditions; if such a conventional class set had to be built for other reasons such as the convenience of builder-UI code, I think it would be advisable to have the class set produce an Expression rather than directly evaluate, but first consider whether you need the pattern at all in C# - I've seen way too much Specification-overdosed code.

like image 145
Jeffrey Hantin Avatar answered Sep 25 '22 20:09

Jeffrey Hantin