I draw lots of quadratic Bézier curves in my OpenGL program. Right now, the curves are one-pixel thin and software-generated, because I'm at a rather early stage, and it is enough to see what works.
Simply enough, given 3 control points (P0 to P2), I evaluate the following equation with t varying from 0 to 1 (with steps of 1/8) in software and use GL_LINE_STRIP
to link them together:
B(t) = (1 - t)2P0 + 2(1 - t)tP1 + t2P2
Where B
, obviously enough, results in a 2-dimensional vector.
This approach worked 'well enough', since even my largest curves don't need much more than 8 steps to look curved. Still, one pixel thin curves are ugly.
I wanted to write a GLSL shader that would accept control points and a uniform thickness
variable to, well, make the curves thicker. At first I thought about making a pixel shader only, that would color only pixels within a thickness / 2
distance of the curve, but doing so requires solving a third degree polynomial, and choosing between three solutions inside a shader doesn't look like the best idea ever.
I then tried to look up if other people already did it. I stumbled upon a white paper by Loop and Blinn from Microsoft Research where the guys show an easy way of filling the area under a curve. While it works well to that extent, I'm having trouble adapting the idea to drawing between two bouding curves.
Finding bounding curves that match a single curve is rather easy with a geometry shader. The problems come with the fragment shader that should fill the whole thing. Their approach uses the interpolated texture coordinates to determine if a fragment falls over or under the curve; but I couldn't figure a way to do it with two curves (I'm pretty new to shaders and not a maths expert, so the fact I didn't figure out how to do it certainly doesn't mean it's impossible).
My next idea was to separate the filled curve into triangles and only use the Bézier fragment shader on the outer parts. But for that I need to split the inner and outer curves at variable spots, and that means again that I have to solve the equation, which isn't really an option.
Are there viable algorithms for stroking quadratic Bézier curves with a shader?
This partly continues my previous answer, but is actually quite different since I got a couple of central things wrong in that answer.
To allow the fragment shader to only shade between two curves, two sets of "texture" coordinates are supplied as varying variables, to which the technique of Loop-Blinn is applied.
varying vec2 texCoord1,texCoord2;
varying float insideOutside;
varying vec4 col;
void main()
{
float f1 = texCoord1[0] * texCoord1[0] - texCoord1[1];
float f2 = texCoord2[0] * texCoord2[0] - texCoord2[1];
float alpha = (sign(insideOutside*f1) + 1) * (sign(-insideOutside*f2) + 1) * 0.25;
gl_FragColor = vec4(col.rgb, col.a * alpha);
}
So far, easy. The hard part is setting up the texture coordinates in the geometry shader. Loop-Blinn specifies them for the three vertices of the control triangle, and they are interpolated appropriately across the triangle. But, here we need to have the same interpolated values available while actually rendering a different triangle.
The solution to this is to find the linear function mapping from (x,y) coordinates to the interpolated/extrapolated values. Then, these values can be set for each vertex while rendering a triangle. Here's the key part of my code for this part.
vec2[3] tex = vec2[3]( vec2(0,0), vec2(0.5,0), vec2(1,1) );
mat3 uvmat;
uvmat[0] = vec3(pos2[0].x, pos2[1].x, pos2[2].x);
uvmat[1] = vec3(pos2[0].y, pos2[1].y, pos2[2].y);
uvmat[2] = vec3(1, 1, 1);
mat3 uvInv = inverse(transpose(uvmat));
vec3 uCoeffs = vec3(tex[0][0],tex[1][0],tex[2][0]) * uvInv;
vec3 vCoeffs = vec3(tex[0][1],tex[1][1],tex[2][1]) * uvInv;
float[3] uOther, vOther;
for(i=0; i<3; i++) {
uOther[i] = dot(uCoeffs,vec3(pos1[i].xy,1));
vOther[i] = dot(vCoeffs,vec3(pos1[i].xy,1));
}
insideOutside = 1;
for(i=0; i< gl_VerticesIn; i++){
gl_Position = gl_ModelViewProjectionMatrix * pos1[i];
texCoord1 = tex[i];
texCoord2 = vec2(uOther[i], vOther[i]);
EmitVertex();
}
EndPrimitive();
Here pos1 and pos2 contain the coordinates of the two control triangles. This part renders the triangle defined by pos1, but with texCoord2 set to the translated values from the pos2 triangle. Then the pos2 triangle needs to be rendered, similarly. Then the gap between these two triangles at each end needs to filled, with both sets of coordinates translated appropriately.
The calculation of the matrix inverse requires either GLSL 1.50 or it needs to be coded manually. It would be better to solve the equation for the translation without calculating the inverse. Either way, I don't expect this part to be particularly fast in the geometry shader.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With