I am using WebGL to resize images clientside very quickly within an app I am working on. I have written a GLSL shader that performs simple bilinear filtering on the images that I am downsizing.
It works fine for the most part but there are many occasions where the resize is huge e.g. from a 2048x2048 image down to 110x110 in order to generate a thumbnail. In these instances the quality is poor and far too blurry.
My current GLSL shader is as follows:
uniform float textureSizeWidth;\
uniform float textureSizeHeight;\
uniform float texelSizeX;\
uniform float texelSizeY;\
varying mediump vec2 texCoord;\
uniform sampler2D texture;\
\
vec4 tex2DBiLinear( sampler2D textureSampler_i, vec2 texCoord_i )\
{\
vec4 p0q0 = texture2D(textureSampler_i, texCoord_i);\
vec4 p1q0 = texture2D(textureSampler_i, texCoord_i + vec2(texelSizeX, 0));\
\
vec4 p0q1 = texture2D(textureSampler_i, texCoord_i + vec2(0, texelSizeY));\
vec4 p1q1 = texture2D(textureSampler_i, texCoord_i + vec2(texelSizeX , texelSizeY));\
\
float a = fract( texCoord_i.x * textureSizeWidth );\
\
vec4 pInterp_q0 = mix( p0q0, p1q0, a );\
vec4 pInterp_q1 = mix( p0q1, p1q1, a );\
\
float b = fract( texCoord_i.y * textureSizeHeight );\
return mix( pInterp_q0, pInterp_q1, b );\
}\
void main() { \
\
gl_FragColor = tex2DBiLinear(texture,texCoord);\
}');
TexelsizeX and TexelsizeY are simply (1.0 / texture width) and height respectively...
I would like to implement a higher quality filtering technique, ideally a [Lancosz][1] filter which should produce far better results but I cannot seem to get my head around how to implement the algorithm with GLSL as I am very new to WebGL and GLSL in general.
Could anybody point me in the right direction?
Thanks in advance.
As mentioned in how it works WebGL requires 2 shaders every time you draw something. A vertex shader and a fragment shader. Each shader is a function. A vertex shader and fragment shader are linked together into a shader program (or just program).
Shaders use GLSL (OpenGL Shading Language), a special OpenGL Shading Language with syntax similar to C. GLSL is executed directly by the graphics pipeline.
WebGL require a shader program for the vertex and fragment manipulation sections of the graphics pipeline. A shader program are written in GLSL (Graphics Library Shader Language). This section provides a general introduction to GLSL. The GLSL language has gone through many versions.
vec4 is a floating point vector with four components. It can be initialized by: Providing a scalar value for each component. Providing one scalar value. This value is used for all components.
If you're looking for Lanczos resampling, the following is the shader program I use in my open source GPUImage library:
Vertex shader:
attribute vec4 position;
attribute vec2 inputTextureCoordinate;
uniform float texelWidthOffset;
uniform float texelHeightOffset;
varying vec2 centerTextureCoordinate;
varying vec2 oneStepLeftTextureCoordinate;
varying vec2 twoStepsLeftTextureCoordinate;
varying vec2 threeStepsLeftTextureCoordinate;
varying vec2 fourStepsLeftTextureCoordinate;
varying vec2 oneStepRightTextureCoordinate;
varying vec2 twoStepsRightTextureCoordinate;
varying vec2 threeStepsRightTextureCoordinate;
varying vec2 fourStepsRightTextureCoordinate;
void main()
{
gl_Position = position;
vec2 firstOffset = vec2(texelWidthOffset, texelHeightOffset);
vec2 secondOffset = vec2(2.0 * texelWidthOffset, 2.0 * texelHeightOffset);
vec2 thirdOffset = vec2(3.0 * texelWidthOffset, 3.0 * texelHeightOffset);
vec2 fourthOffset = vec2(4.0 * texelWidthOffset, 4.0 * texelHeightOffset);
centerTextureCoordinate = inputTextureCoordinate;
oneStepLeftTextureCoordinate = inputTextureCoordinate - firstOffset;
twoStepsLeftTextureCoordinate = inputTextureCoordinate - secondOffset;
threeStepsLeftTextureCoordinate = inputTextureCoordinate - thirdOffset;
fourStepsLeftTextureCoordinate = inputTextureCoordinate - fourthOffset;
oneStepRightTextureCoordinate = inputTextureCoordinate + firstOffset;
twoStepsRightTextureCoordinate = inputTextureCoordinate + secondOffset;
threeStepsRightTextureCoordinate = inputTextureCoordinate + thirdOffset;
fourStepsRightTextureCoordinate = inputTextureCoordinate + fourthOffset;
}
Fragment shader:
precision highp float;
uniform sampler2D inputImageTexture;
varying vec2 centerTextureCoordinate;
varying vec2 oneStepLeftTextureCoordinate;
varying vec2 twoStepsLeftTextureCoordinate;
varying vec2 threeStepsLeftTextureCoordinate;
varying vec2 fourStepsLeftTextureCoordinate;
varying vec2 oneStepRightTextureCoordinate;
varying vec2 twoStepsRightTextureCoordinate;
varying vec2 threeStepsRightTextureCoordinate;
varying vec2 fourStepsRightTextureCoordinate;
// sinc(x) * sinc(x/a) = (a * sin(pi * x) * sin(pi * x / a)) / (pi^2 * x^2)
// Assuming a Lanczos constant of 2.0, and scaling values to max out at x = +/- 1.5
void main()
{
lowp vec4 fragmentColor = texture2D(inputImageTexture, centerTextureCoordinate) * 0.38026;
fragmentColor += texture2D(inputImageTexture, oneStepLeftTextureCoordinate) * 0.27667;
fragmentColor += texture2D(inputImageTexture, oneStepRightTextureCoordinate) * 0.27667;
fragmentColor += texture2D(inputImageTexture, twoStepsLeftTextureCoordinate) * 0.08074;
fragmentColor += texture2D(inputImageTexture, twoStepsRightTextureCoordinate) * 0.08074;
fragmentColor += texture2D(inputImageTexture, threeStepsLeftTextureCoordinate) * -0.02612;
fragmentColor += texture2D(inputImageTexture, threeStepsRightTextureCoordinate) * -0.02612;
fragmentColor += texture2D(inputImageTexture, fourStepsLeftTextureCoordinate) * -0.02143;
fragmentColor += texture2D(inputImageTexture, fourStepsRightTextureCoordinate) * -0.02143;
gl_FragColor = fragmentColor;
}
This is applied in two passes, with the first performing a horizontal downsampling and the second a vertical downsampling. The texelWidthOffset
and texelHeightOffset
uniforms are alternately set to 0.0 and the width fraction or height fraction of a single pixel in the image.
I hard-calculate the texel offsets in the vertex shader because this avoids dependent texture reads on the mobile devices I'm targeting with this, leading to significantly better performance there. It is a little verbose, though.
Results from this Lanczos resampling:
Normal bilinear downsampling:
Nearest-neighbor downsampling:
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With