I have successfully implemented a kernel perceptron classifier, that uses an RBF kernel. I understand that the kernel trick maps features to a higher dimension so that a linear hyperplane can be constructed to separate the points. For example, if you have features (x1,x2) and map it to a 3-dimensional feature space you might get: K(x1,x2) = (x1^2, sqrt(x1)*x2, x2^2)
.
If you plug that into the perceptron decision function w'x+b = 0
, you end up with: w1'x1^2 + w2'sqrt(x1)*x2 + w3'x2^2
which gives you a circular decision boundary.
While the kernel trick itself is very intuitive, I am not able to understand the linear algebra aspect of this. Can someone help me understand how we are able to map all of these additional features without explicitly specifying them, using just the inner product?
Thanks!
Simple.
Give me the numeric result of (x+y)^10 for some values of x and y.
What would you rather do, "cheat" and sum x+y and then take that value to the 10'th power, or expand out the exact results writing out
x^10+10 x^9 y+45 x^8 y^2+120 x^7 y^3+210 x^6 y^4+252 x^5 y^5+210 x^4 y^6+120 x^3 y^7+45 x^2 y^8+10 x y^9+y^10
And then compute each term and then add them together? Clearly we can evaluate the dot product between degree 10 polynomials without explicitly forming them.
Valid kernels are dot products where we can "cheat" and compute the numeric result between two points without having to form their explicit feature values. There are many such possible kernels, though only a few have been getting used a lot on papers / practice.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With