Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Imputer on some Dataframe columns in Python

I am learning how to use Imputer on Python.

This is my code:

df=pd.DataFrame([["XXL", 8, "black", "class 1", 22],
["L", np.nan, "gray", "class 2", 20],
["XL", 10, "blue", "class 2", 19],
["M", np.nan, "orange", "class 1", 17],
["M", 11, "green", "class 3", np.nan],
["M", 7, "red", "class 1", 22]])

df.columns=["size", "price", "color", "class", "boh"]

from sklearn.preprocessing import Imputer

imp=Imputer(missing_values="NaN", strategy="mean" )
imp.fit(df["price"])

df["price"]=imp.transform(df["price"])

However this rises the following error: ValueError: Length of values does not match length of index

What's wrong with my code???

Thanks for helping

like image 683
Mauro Gentile Avatar asked Jul 26 '16 07:07

Mauro Gentile


Video Answer


2 Answers

Simple solution is to provide a 2D array

df=pd.DataFrame([["XXL", 8, "black", "class 1", 22],
["L", np.nan, "gray", "class 2", 20],
["XL", 10, "blue", "class 2", 19],
["M", np.nan, "orange", "class 1", 17],
["M", 11, "green", "class 3", np.nan],
["M", 7, "red", "class 1", 22]])

df.columns=["size", "price", "color", "class", "boh"]

from sklearn.preprocessing import Imputer

imp=Imputer(missing_values="NaN", strategy="mean" )
imp.fit(df[["price"]])

df["price"]=imp.transform(df[["price"]])

df['boh'] = imp.fit_transform(df[['price']])

Here is your DataFrame

Cleaned DataFrame

like image 169
Sachin Prabhu Avatar answered Oct 08 '22 09:10

Sachin Prabhu


Here is the documentation for Simple Imputer For the fit method, it takes array-like or sparse metrix as an input parameter. you can try this :

imp.fit(df.iloc[:,1:2]) 
df['price']=imp.transform(df.iloc[:,1:2])

provide index location to fit method and then apply the transform.

>>> df
   size  price   color    class   boh
 0  XXL    8.0   black  class 1  22.0
 1    L    9.0    gray  class 2  20.0
 2   XL   10.0    blue  class 2  19.0
 3    M    9.0  orange  class 1  17.0
 4    M   11.0   green  class 3   NaN
 5    M    7.0     red  class 1  22.0

Same way you can do for boh

imp.fit(df.iloc[:,4:5])
df['price']=imp.transform(df.iloc[:,4:5])
>>> df
    size  price   color    class   boh
 0  XXL    8.0   black  class 1  22.0
 1    L    9.0    gray  class 2  20.0
 2   XL   10.0    blue  class 2  19.0
 3    M    9.0  orange  class 1  17.0
 4    M   11.0   green  class 3  20.0
 5    M    7.0     red  class 1  22.0

Kindly correct me if I am wrong. Suggestions will be appreciated.

like image 30
shinchaan Avatar answered Oct 08 '22 07:10

shinchaan