I am implementing BFSK frequency hopping communication system on a DSP processor. It was suggested by some of the forum members to use Goertzel algorithm for the demodulation of frequency hopping at specific frequencies. I have tried implementing the goertzel algorithm in C. the code is follows:
float goertzel(int numSamples,int TARGET_FREQUENCY,int SAMPLING_RATE, float* data)
{
int k,i;
float floatnumSamples;
float omega,sine,cosine,coeff,q0,q1,q2,result,real,imag;
floatnumSamples = (float) numSamples;
k = (int) (0.5 + ((floatnumSamples * TARGET_FREQUENCY) / SAMPLING_RATE));
omega = (2.0 * M_PI * k) / floatnumSamples;
sine = sin(omega);
cosine = cos(omega);
coeff = 2.0 * cosine;
q0=0;
q1=0;
q2=0;
for(i=0; i<numSamples; i++)
{
q0 = coeff * q1 - q2 + data[i];
q2 = q1;
q1 = q0;
}
real = (q1 - q2 * cosine);
imag = (q2 * sine);
result = sqrtf(real*real + imag*imag);
return result;
}
When I use the function to calculate the result at specific frequencies for a given dataset, I am not getting the correct results. However, if I use the same dataset and calculate the goertzel result using MATLAB goertzel() function, then I get the results perfectly. I am implemented the algorithm using C, with the help of some online tutorials that I found over the internet. I just want to get the view of you guys if the function is implementing the goertzel algorithm correctly.
Like the DFT, the Goertzel algorithm analyses one selectable frequency component from a discrete signal. Unlike direct DFT calculations, the Goertzel algorithm applies a single real-valued coefficient at each iteration, using real-valued arithmetic for real-valued input sequences.
The Goertzel algorithm is typically used for frequency detection in the telephone tone dialing (dual-tone multi-frequency, DTMF), where the meaning of the signaling is determined by two out of a total of eight frequencies being simultaneously present [5].
If you are saying that the Matlab implementation is good because its results match the result for that frequency of a DFT or FFT of your data, then it's probably because the Matlab implementation is normalizing the results by a scaling factor as is done with the FFT.
Change your code to take this into account and see if it improves your results. Note that I also changed the function and result names to reflect that your goertzel is calculating the magnitude, not the complete complex result, for clarity:
float goertzel_mag(int numSamples,int TARGET_FREQUENCY,int SAMPLING_RATE, float* data)
{
int k,i;
float floatnumSamples;
float omega,sine,cosine,coeff,q0,q1,q2,magnitude,real,imag;
float scalingFactor = numSamples / 2.0;
floatnumSamples = (float) numSamples;
k = (int) (0.5 + ((floatnumSamples * TARGET_FREQUENCY) / SAMPLING_RATE));
omega = (2.0 * M_PI * k) / floatnumSamples;
sine = sin(omega);
cosine = cos(omega);
coeff = 2.0 * cosine;
q0=0;
q1=0;
q2=0;
for(i=0; i<numSamples; i++)
{
q0 = coeff * q1 - q2 + data[i];
q2 = q1;
q1 = q0;
}
// calculate the real and imaginary results
// scaling appropriately
real = (q1 - q2 * cosine) / scalingFactor;
imag = (q2 * sine) / scalingFactor;
magnitude = sqrtf(real*real + imag*imag);
return magnitude;
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With