If you look at the following timings:
C:\Users\Henry>python -m timeit -s "mul = int.__mul__" "reduce(mul,range(10000))"
1000 loops, best of 3: 908 usec per loop
C:\Users\Henry>python -m timeit -s "from operator import mul" "reduce(mul,range(10000))"
1000 loops, best of 3: 410 usec per loop
There is a significant difference in execution speed between
reduce(int.__mul__,range(10000))
and reduce(mul,range(10000))
with the latter being faster.
using the dis
module to look at what was happening:
Using int.__mul__
method:
C:\Users\Henry>python
Python 2.7.4 (default, Apr 6 2013, 19:55:15) [MSC v.1500 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> mul = int.__mul__
>>> def test():
... mul(1,2)
...
>>> import dis
>>> dis.dis(test)
2 0 LOAD_GLOBAL 0 (mul)
3 LOAD_CONST 1 (1)
6 LOAD_CONST 2 (2)
9 CALL_FUNCTION 2
12 POP_TOP
13 LOAD_CONST 0 (None)
16 RETURN_VALUE
>>>
And the operator mul
method
C:\Users\Henry>python
Python 2.7.4 (default, Apr 6 2013, 19:55:15) [MSC v.1500 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> from operator import mul
>>> def test():
... mul(1,2)
...
>>> import dis
>>> dis.dis(test)
2 0 LOAD_GLOBAL 0 (mul)
3 LOAD_CONST 1 (1)
6 LOAD_CONST 2 (2)
9 CALL_FUNCTION 2
12 POP_TOP
13 LOAD_CONST 0 (None)
16 RETURN_VALUE
>>>
They appear the same, so why is there a difference in execution speed? I am referring to the CPython implementation of Python
The same happens on python3:
$ python3 -m timeit -s 'mul=int.__mul__;from functools import reduce' 'reduce(mul, range(10000))'
1000 loops, best of 3: 1.18 msec per loop
$ python3 -m timeit -s 'from operator import mul;from functools import reduce' 'reduce(mul, range(10000))'
1000 loops, best of 3: 643 usec per loop
$ python3 -m timeit -s 'mul=lambda x,y:x*y;from functools import reduce' 'reduce(mul, range(10000))'
1000 loops, best of 3: 1.26 msec per loop
int.__mul__
is a slot wrapper, namely, a PyWrapperDescrObject, while operator.mul
is a buit-in function.
I think the opposite execution speed is caused by this difference.
>>> int.__mul__
<slot wrapper '__mul__' of 'int' objects>
>>> operator.mul
<built-in function mul>
When we call a PyWrapperDescrObject, wrapperdescr_call
is called.
static PyObject *
wrapperdescr_call(PyWrapperDescrObject *descr, PyObject *args, PyObject *kwds)
{
Py_ssize_t argc;
PyObject *self, *func, *result;
/* Make sure that the first argument is acceptable as 'self' */
assert(PyTuple_Check(args));
argc = PyTuple_GET_SIZE(args);
if (argc d_type->tp_name);
return NULL;
}
self = PyTuple_GET_ITEM(args, 0);
if (!_PyObject_RealIsSubclass((PyObject *)Py_TYPE(self),
(PyObject *)(descr->d_type))) {
PyErr_Format(PyExc_TypeError,
"descriptor '%.200s' "
"requires a '%.100s' object "
"but received a '%.100s'",
descr_name((PyDescrObject *)descr),
descr->d_type->tp_name,
self->ob_type->tp_name);
return NULL;
}
func = PyWrapper_New((PyObject *)descr, self);
if (func == NULL)
return NULL;
args = PyTuple_GetSlice(args, 1, argc);
if (args == NULL) {
Py_DECREF(func);
return NULL;
}
result = PyEval_CallObjectWithKeywords(func, args, kwds);
Py_DECREF(args);
Py_DECREF(func);
return result;
}
Let us look at what we found!
func = PyWrapper_New((PyObject *)descr, self);
A new PyWrapper object has been constructed. It would slow down the execution speed significantly.
Sometimes, it takes more time to create a new object than to run a simple function.
Thus, it is not surprised that int.__mul__
is slower than operator.mul
.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With