I am trying to use dplyr::mutate_each
with some external functions without attaching actual libraries
dplyr::tbl_df(iris) %>%
dplyr::mutate_each(dplyr::funs(stringi::stri_trim_both))
but it fails with following error:
Error: unsupported type for column 'Sepal.Length' (CLOSXP, classes = function)
When I use data.table
instead of data.frame
:
Error in `[.data.table`(`_dt`, , `:=`(Sepal.Length, stringi::stri_trim_both), : RHS of assignment is not NULL, not an an atomic vector (see ?is.atomic) and not a list column.
If I use local variable as below everything works as expected.
trim_both <- stringi::stri_trim_both
dplyr::tbl_df(iris) %>% dplyr::mutate_each(dplyr::funs(trim_both))
It is not an optimal solution but I can live with that. Nevertheless I would be grateful for an explanation what is the source of the problem.
Session info:
R version 3.1.1 (2014-07-10)
Platform: x86_64-pc-linux-gnu (64-bit)
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] dplyr_0.4.1
loaded via a namespace (and not attached):
[1] assertthat_0.1 DBI_0.3.1 lazyeval_0.1.10.9000
[4] magrittr_1.5 parallel_3.1.1 Rcpp_0.11.4
[7] stringi_0.4-1 tools_3.1.1
Note: This problem no longer occurs in dplyr
0.7.2.
%>% is called the forward pipe operator in R. It provides a mechanism for chaining commands with a new forward-pipe operator, %>%. This operator will forward a value, or the result of an expression, into the next function call/expression. It is defined by the package magrittr (CRAN) and is heavily used by dplyr (CRAN).
dplyr is a package for making tabular data manipulation easier. tidyr enables you to swiftly convert between different data formats.
6.4 dplyr basicsfilter() : pick observations by their values. select() : pick variables by their names. mutate() : create new variables with functions of existing variables. summarise() : collapse many values down to a single summary.
The underlying reason is that dplyr::funs_
calls dplyr:::make_call
. And dplyr:::make_call
differentiates between cases using the class
of the object generated by lazyeval::lazy_dots
.
class(lazyeval::lazy_dots(trim_both)[[1]]$expr)
## "name"
class(lazyeval::lazy_dots(stringi::stri_trim_both)[[1]]$expr)
## "call"
See the function my_funs
below for a solution to this. I have not tested this in any detail and I am sure that there is a reason that this was different in dplyr
, so do not use this as a default. It's mostly meant to clarify the problem
# calling my_funs_ (instead of funs_)
my_funs <- function (...)
my_funs_(lazyeval::lazy_dots(...))
my_funs_ <- function(dots){
dots <- lazyeval::as.lazy_dots(dots)
env <- lazyeval::common_env(dots)
names(dots) <- dplyr:::names2(dots)
# difference here
dots[] <- lapply(dots, function(x) {
if (is.character(x$expr)) {
x$expr <- substitute(f(.), list(f = as.name(x$expr)))
}
else if (is.name(x$expr)) {
x$expr <- substitute(f(.), list(f = x$expr))
}
else if (is.call(x$expr)) {
x$expr <- substitute(f(.), list(f = x$expr)) #### this line was different
# originally x$expr <- x$expr
}
else {
stop("Unknown inputs")
}
x
})
missing_names <- names(dots) == ""
### this is also different
default_names <- vapply(dots[missing_names], function(x) as.character(x)[1],
character(1))
## originally dplyr:::make_name(x) instead of as.character(x)[1]
names(dots)[missing_names] <- default_names
class(dots) <- c("fun_list", "lazy_dots")
dots
}
dplyr::tbl_df(iris) %>%
dplyr::mutate_each(my_funs(stringi::stri_trim_both))
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With