I have a problem when using python's matplotlib PATH modules I want to draw a close poly like this:
but I don't know exactly the sequence of the points to be connected and it turned out the result images can't meet my needs. How can I draw a polygon correctly without determining the sequence by myself but by the code?
here is my code:
import matplotlib
import matplotlib.pyplot as plt
import pandas
from matplotlib.path import Path
import matplotlib.patches as patches
#read data
info = pandas.read_csv('/Users/james/Desktop/nba.csv')
info.columns = ['number', 'team_id', 'player_id', 'x_loc', 'y_loc',
'radius', 'moment', 'game_clock', 'shot_clock', 'player_name',
'player_jersey']
#first_team_info
x_1 = info.x_loc[1:6]
y_1 = info.y_loc[1:6]
matrix= [x_1,y_1]
z_1 = list(zip(*matrix))
z_1.append(z_1[4])
n_1 = info.player_jersey[1:6]
verts = z_1
codes = [Path.MOVETO,
Path.LINETO,
Path.LINETO,
Path.LINETO,
Path.LINETO,
Path.CLOSEPOLY,
]
path = Path(verts, codes)
fig = plt.figure()
ax = fig.add_subplot(111)
patch = patches.PathPatch(path, facecolor='orange', lw=2)
ax.add_patch(patch)
ax.set_xlim(0, 100)
ax.set_ylim(0, 55)
plt.show()
and I got this:
The object underlying all of the matplotlib.patches objects is the Path , which supports the standard set of moveto, lineto, curveto commands to draw simple and compound outlines consisting of line segments and splines. The Path is instantiated with a (N, 2) array of (x, y) vertices, and a N-length array of path codes.
Matplotlib plots the points of a path in order they are given to patch. This can lead to undesired results, if there is no control over the order, like in the case from the question.
So the solution may be to
scipy.spatial.ConvexHull
to calculate the circonference of the points, which is automatically in the correct order. This gives good results in many cases, see first row, but may fail in other cases, because points inside the hull are ignored.import numpy as np
import matplotlib.pyplot as plt
from scipy.spatial import ConvexHull
p = [(1,1), (2,1.6), (0.8,2.7), (1.7,3.2)]
p2 = [(0.7,1.3),(2,0.9),(1.4,1.5),(1.9,3.1),(0.6,2.5),(1.4,2.3)]
def convexhull(p):
p = np.array(p)
hull = ConvexHull(p)
return p[hull.vertices,:]
def ccw_sort(p):
p = np.array(p)
mean = np.mean(p,axis=0)
d = p-mean
s = np.arctan2(d[:,0], d[:,1])
return p[np.argsort(s),:]
fig, axes = plt.subplots(ncols=3, nrows=2, sharex=True, sharey=True)
axes[0,0].set_title("original")
poly = plt.Polygon(p, ec="k")
axes[0,0].add_patch(poly)
poly2 = plt.Polygon(p2, ec="k")
axes[1,0].add_patch(poly2)
axes[0,1].set_title("convex hull")
poly = plt.Polygon(convexhull(p), ec="k")
axes[0,1].add_patch(poly)
poly2 = plt.Polygon(convexhull(p2), ec="k")
axes[1,1].add_patch(poly2)
axes[0,2].set_title("ccw sort")
poly = plt.Polygon(ccw_sort(p), ec="k")
axes[0,2].add_patch(poly)
poly2 = plt.Polygon(ccw_sort(p2), ec="k")
axes[1,2].add_patch(poly2)
for ax in axes[0,:]:
x,y = zip(*p)
ax.scatter(x,y, color="k", alpha=0.6, zorder=3)
for ax in axes[1,:]:
x,y = zip(*p2)
ax.scatter(x,y, color="k", alpha=0.6, zorder=3)
axes[0,0].margins(0.1)
axes[0,0].relim()
axes[0,0].autoscale_view()
plt.show()
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With