Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

How to transpose a 16x16 matrix using SIMD instructions?

I'm currently writing some code targeting Intel's forthcoming AVX-512 SIMD instructions, which supports 512-bit operations.

Now assuming there's a matrix represented by 16 SIMD registers, each holding 16 32-bit integers (corresponds to a row), how can I transpose the matrix with purely SIMD instructions?

There're already solutions to transposing 4x4 or 8x8 matrices with SSE and AVX2 respectively. But I couldn't figure out how to extend it to 16x16 with AVX-512.

Any ideas?

like image 378
lei_z Avatar asked Apr 08 '15 15:04

lei_z


People also ask

How do you convert a matrix to transpose?

To calculate the transpose of a matrix, simply interchange the rows and columns of the matrix i.e. write the elements of the rows as columns and write the elements of a column as rows.

What is transpose in array?

The transpose of a matrix is obtained by moving the rows data to the column and columns data to the rows. If we have an array of shape (X, Y) then the transpose of the array will have the shape (Y, X).


1 Answers

For two operand instructions using SIMD you can show that the number of operations necessary to transpose a nxn matrix is n*log_2(n) whereas using scalar operations it's O(n^2). In fact, later I'll show that the number of read and write operations using the scalar registers is 2*n*(n-1). Below is a table showing the number of operations to transpose 4x4, 8x8, 16x16, and 32x32 matrices using SSE, AVX, AVX512, and AVX1024 compared to the scalar operations

n            4(SSE)          8(AVX)    16(AVX512)    32(AVX1024)  
SIMD ops          8              24           64            160
SIMD +r/w ops    16              40           96            224     
Scalar r/w ops   24             112          480           1984

where SIMD +r/w ops includes the read and write operations (n*log_2(n) + 2*n).

The reason the SIMD transpose can be done in n*log_2(n) operations is that the algorithm is:

permute n 32-bit rows
permute n 64-bit rows
...
permute n simd_width/2-bit rows

For example, for 4x4 there are 4 rows and therefore you have to permute 32-bit lanes 4 times and then 64-bit lanes 4 times. For 16x16 you have to permute 32-bit lanes , 64-bit lanes, 128-bit lanes, and finally 256-lanes 16 times for each.

I already showed that 8x8 can be done with 24 operations with AVX. So the question is how to do this for 16x16 using AVX512 in 64 operations? The general algorithm is:

interleave 32-bit lanes using 
    8x _mm512_unpacklo_epi32
    8x _mm512_unpackhi_epi32
interleave 64-bit lanes using
    8x _mm512_unpacklo_epi64 
    8x _mm512_unpackhi_epi64 
permute 128-bit lanes using
   16x _mm512_shuffle_i32x4
permute 256-bit lanes using again
   16x _mm512_shuffle_i32x4

Here is untested code doing this

    //given __m512i r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, ra, rb, rc, rd, re, rf;
    __m512i t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, ta, tb, tc, td, te, tf;

    t0 = _mm512_unpacklo_epi32(r0,r1); //   0  16   1  17   4  20   5  21   8  24   9  25  12  28  13  29 
    t1 = _mm512_unpackhi_epi32(r0,r1); //   2  18   3  19   6  22   7  23  10  26  11  27  14  30  15  31
    t2 = _mm512_unpacklo_epi32(r2,r3); //  32  48  33  49 ...
    t3 = _mm512_unpackhi_epi32(r2,r3); //  34  50  35  51 ...
    t4 = _mm512_unpacklo_epi32(r4,r5); //  64  80  65  81 ...  
    t5 = _mm512_unpackhi_epi32(r4,r5); //  66  82  67  83 ...
    t6 = _mm512_unpacklo_epi32(r6,r7); //  96 112  97 113 ...
    t7 = _mm512_unpackhi_epi32(r6,r7); //  98 114  99 115 ...
    t8 = _mm512_unpacklo_epi32(r8,r9); // 128 ...
    t9 = _mm512_unpackhi_epi32(r8,r9); // 130 ...
    ta = _mm512_unpacklo_epi32(ra,rb); // 160 ...
    tb = _mm512_unpackhi_epi32(ra,rb); // 162 ...
    tc = _mm512_unpacklo_epi32(rc,rd); // 196 ...
    td = _mm512_unpackhi_epi32(rc,rd); // 198 ...
    te = _mm512_unpacklo_epi32(re,rf); // 228 ...
    tf = _mm512_unpackhi_epi32(re,rf); // 230 ...

    r0 = _mm512_unpacklo_epi64(t0,t2); //   0  16  32  48 ...
    r1 = _mm512_unpackhi_epi64(t0,t2); //   1  17  33  49 ...
    r2 = _mm512_unpacklo_epi64(t1,t3); //   2  18  34  49 ...
    r3 = _mm512_unpackhi_epi64(t1,t3); //   3  19  35  51 ...
    r4 = _mm512_unpacklo_epi64(t4,t6); //  64  80  96 112 ...  
    r5 = _mm512_unpackhi_epi64(t4,t6); //  65  81  97 114 ...
    r6 = _mm512_unpacklo_epi64(t5,t7); //  66  82  98 113 ...
    r7 = _mm512_unpackhi_epi64(t5,t7); //  67  83  99 115 ...
    r8 = _mm512_unpacklo_epi64(t8,ta); // 128 144 160 176 ...  
    r9 = _mm512_unpackhi_epi64(t8,ta); // 129 145 161 178 ...
    ra = _mm512_unpacklo_epi64(t9,tb); // 130 146 162 177 ... 
    rb = _mm512_unpackhi_epi64(t9,tb); // 131 147 163 179 ...
    rc = _mm512_unpacklo_epi64(tc,te); // 192 208 228 240 ... 
    rd = _mm512_unpackhi_epi64(tc,te); // 193 209 229 241 ...
    re = _mm512_unpacklo_epi64(td,tf); // 194 210 230 242 ...
    rf = _mm512_unpackhi_epi64(td,tf); // 195 211 231 243 ...

    t0 = _mm512_shuffle_i32x4(r0, r4, 0x88); //   0  16  32  48   8  24  40  56  64  80  96  112 ...
    t1 = _mm512_shuffle_i32x4(r1, r5, 0x88); //   1  17  33  49 ...
    t2 = _mm512_shuffle_i32x4(r2, r6, 0x88); //   2  18  34  50 ...
    t3 = _mm512_shuffle_i32x4(r3, r7, 0x88); //   3  19  35  51 ...
    t4 = _mm512_shuffle_i32x4(r0, r4, 0xdd); //   4  20  36  52 ...
    t5 = _mm512_shuffle_i32x4(r1, r5, 0xdd); //   5  21  37  53 ...
    t6 = _mm512_shuffle_i32x4(r2, r6, 0xdd); //   6  22  38  54 ...
    t7 = _mm512_shuffle_i32x4(r3, r7, 0xdd); //   7  23  39  55 ...
    t8 = _mm512_shuffle_i32x4(r8, rc, 0x88); // 128 144 160 176 ...
    t9 = _mm512_shuffle_i32x4(r9, rd, 0x88); // 129 145 161 177 ...
    ta = _mm512_shuffle_i32x4(ra, re, 0x88); // 130 146 162 178 ...
    tb = _mm512_shuffle_i32x4(rb, rf, 0x88); // 131 147 163 179 ...
    tc = _mm512_shuffle_i32x4(r8, rc, 0xdd); // 132 148 164 180 ...
    td = _mm512_shuffle_i32x4(r9, rd, 0xdd); // 133 149 165 181 ...
    te = _mm512_shuffle_i32x4(ra, re, 0xdd); // 134 150 166 182 ...
    tf = _mm512_shuffle_i32x4(rb, rf, 0xdd); // 135 151 167 183 ...

    r0 = _mm512_shuffle_i32x4(t0, t8, 0x88); //   0  16  32  48  64  80  96 112 ... 240
    r1 = _mm512_shuffle_i32x4(t1, t9, 0x88); //   1  17  33  49  66  81  97 113 ... 241
    r2 = _mm512_shuffle_i32x4(t2, ta, 0x88); //   2  18  34  50  67  82  98 114 ... 242
    r3 = _mm512_shuffle_i32x4(t3, tb, 0x88); //   3  19  35  51  68  83  99 115 ... 243
    r4 = _mm512_shuffle_i32x4(t4, tc, 0x88); //   4 ...
    r5 = _mm512_shuffle_i32x4(t5, td, 0x88); //   5 ...
    r6 = _mm512_shuffle_i32x4(t6, te, 0x88); //   6 ...
    r7 = _mm512_shuffle_i32x4(t7, tf, 0x88); //   7 ...
    r8 = _mm512_shuffle_i32x4(t0, t8, 0xdd); //   8 ...
    r9 = _mm512_shuffle_i32x4(t1, t9, 0xdd); //   9 ...
    ra = _mm512_shuffle_i32x4(t2, ta, 0xdd); //  10 ...
    rb = _mm512_shuffle_i32x4(t3, tb, 0xdd); //  11 ...
    rc = _mm512_shuffle_i32x4(t4, tc, 0xdd); //  12 ...
    rd = _mm512_shuffle_i32x4(t5, td, 0xdd); //  13 ...
    re = _mm512_shuffle_i32x4(t6, te, 0xdd); //  14 ...
    rf = _mm512_shuffle_i32x4(t7, tf, 0xdd); //  15  31  47  63  79  96 111 127 ... 255

I got the idea for using _mm512_shufflei32x4 by looking at transposing a 4x4 matrix using _mm_shuffle_ps (which is what MSVC uses in _MM_TRANSPOSE4_PS but not GCC and ICC).

__m128 tmp0 ,tmp1, tmp2, tmp3;
tmp0 = _mm_shuffle_ps(row0, row1, 0x88); // 0 2 4 6
tmp1 = _mm_shuffle_ps(row0, row1, 0xdd); // 1 3 5 7
tmp2 = _mm_shuffle_ps(row2, row3, 0x88); // 8 a c e
tmp3 = _mm_shuffle_ps(row2, row3, 0xdd); // 9 b d f

row0 = _mm_shuffle_ps(tmp0, tmp2, 0x88); // 0 4 8 c 
row1 = _mm_shuffle_ps(tmp1, tmp3, 0x88); // 1 5 9 d
row2 = _mm_shuffle_ps(tmp0, tmp2, 0xdd); // 2 6 a e 
row3 = _mm_shuffle_ps(tmp1, tmp3, 0xdd); // 3 7 b f

the same idea applies to _mm512_shuffle_i32x4 but now the lanes are 128-bit instead of 32-bit and there are 16 rows instead of 4 rows.

Finally, to compare to scalar operations I modified Example 9.5a from Agner Fog's optimizing C++ manual

#define SIZE 16
void transpose(int a[SIZE][SIZE]) { // function to transpose matrix
    // define a macro to swap two array elements:
    #define swapd(x,y) {temp=x; x=y; y=temp;}
    int r, c; int temp;
    for (r = 1; r < SIZE; r++) {
        for (c = 0; c < r; c++) {
            swapd(a[r][c], a[c][r]);
        }
    }
}

this does n*(n-1)/2 swaps (because the diagonal does not need to be swapped). The swaps from assembly for 16x16 look like

mov     r8d, DWORD PTR [rax+68]
mov     r9d, DWORD PTR [rdx+68]
mov     DWORD PTR [rax+68], r9d
mov     DWORD PTR [rdx+68], r8d

so the number of read/write operations using the scalar registers is 2*n*(n-1).

like image 121
Z boson Avatar answered Sep 21 '22 08:09

Z boson