First off, this question is ripped out from this question. I did it because I think this part is bigger than a sub-part of a longer question. If it offends, please pardon me.
Assume that you have a algorithm that generates randomness. Now how do you test it? Or to be more direct - Assume you have an algorithm that shuffles a deck of cards, how do you test that it's a perfectly random algorithm?
To add some theory to the problem - A deck of cards can be shuffled in 52! (52 factorial) different ways. Take a deck of cards, shuffle it by hand and write down the order of all cards. What is the probability that you would have gotten exactly that shuffle? Answer: 1 / 52!.
What is the chance that you, after shuffling, will get A, K, Q, J ... of each suit in a sequence? Answer 1 / 52!
So, just shuffling once and looking at the result will give you absolutely no information about your shuffling algorithms randomness. Twice and you have more information, Three even more...
How would you black box test a shuffling algorithm for randomness?
Hypothesis: To test the run test of randomness, first set up the null and alternative hypothesis. In run test of randomness, null hypothesis assumes that the distributions of the two continuous populations are the same. The alternative hypothesis will be the opposite of the null hypothesis.
The Fisher–Yates shuffle is an algorithm for generating a random permutation of a finite sequence—in plain terms, the algorithm shuffles the sequence.
Data Shuffling. Simply put, shuffling techniques aim to mix up data and can optionally retain logical relationships between columns. It randomly shuffles data from a dataset within an attribute (e.g. a column in a pure flat format) or a set of attributes (e.g. a set of columns).
Statistics. The de facto standard for testing RNGs is the Diehard suite (originally available at http://stat.fsu.edu/pub/diehard). Alternatively, the Ent program provides tests that are simpler to interpret but less comprehensive.
As for shuffling algorithms, use a well-known algorithm such as Fisher-Yates (a.k.a "Knuth Shuffle"). The shuffle will be uniformly random so long as the underlying RNG is uniformly random. If you are using Java, this algorithm is available in the standard library (see Collections.shuffle).
It probably doesn't matter for most applications, but be aware that most RNGs do not provide sufficient degrees of freedom to produce every possible permutation of a 52-card deck (explained here).
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With