That is, have them in this form: y = mx + b. Set the two equations for y equal to each other. Solve for x. This will be the x-coordinate for the point of intersection.
Sweep Line Algorithm: We can solve this problem in O(nLogn) time using Sweep Line Algorithm.
The intersection occurs at the point(s) where the two equations equal each other. So set one equation equal to the other, and solve for x. Then substitute that x value back into either equation to get the y value. You then have the x and y values of the point of intersection.
So we can find the point or points of intersection by solving the equation f(x) = g(x). The solution of this equation will give us the x value(s) of the point(s) of intersection. We can then find the y value by putting the value for x that we have found into one of the original equations.
Most of the answers already here seem to follow the general idea that:
But when intersection does not occur often, a better way probably is to reverse these steps:
Note: to do step 2, just check if (C.y - a(C.x) - b) and (D.y - a(D.x) - b) have the same sign. Step 3 is similar. Step 5 is just standard math from the two equations.
Furthermore, if you need to compare each line segment with (n-1) other line segments, precomputing step 1 for all lines saves you time.
If you get the chance you should really check out the Collision Detection bible, "Real Time Collision Detection" if you plan on doing anything non-trivial. I'm not a professional game programmer and I understood and could apply the concepts in it with little trouble.
Amazon - Real Time Collision Detection
Basically, doing a set of line intersection tests is expensive no matter what. What you do is use things like Bounding Boxes (axis aligned or oriented) over your complex polygons. This will allow you to quickly do a worst case O(N^2) check of collision between each "object". You can then speed things up even further by using spatial trees (Binary Partitioning or QuadTrees) by only checking intersections of objects close to eachother.
This allows you to prune many, many collision tests. The best optimization is not doing something at all. Only once you have a collision between bounding boxes do you do your expensive line intersections to determine if the objects truly do intersect or not. This allows you to scale the number of objects up while still keeping the speed reasonable.
float x12 = x1 - x2;
float x34 = x3 - x4;
float y12 = y1 - y2;
float y34 = y3 - y4;
float c = x12 * y34 - y12 * x34;
if (fabs(c) < 0.01)
{
// No intersection
return false;
}
else
{
// Intersection
float a = x1 * y2 - y1 * x2;
float b = x3 * y4 - y3 * x4;
float x = (a * x34 - b * x12) / c;
float y = (a * y34 - b * y12) / c;
return true;
}
Formulas taken from:
Line-line intersection - Wikipedia
A simple optimization that may save you alot of time is to check the axis-aligned bounding boxes of the lines prior to getting into the intersection calculation.
If the bounding boxes are completely disjoint then you can be certain there is no intersection.
Of course this is dependent of the data you have. if an intersection is very likely in every check you make then you might find yourself wasting time on a check that is always true.
public struct PointD
{
public double X { get; set; }
public double Y { get; set; }
}
/// <summary>
/// Find the intersection point between two lines.
/// </summary>
/// <param name="IntersectPoint">The intersection point. A <see cref="Esteem.Geometry.PointD">PointD</see> structure.</param>
/// <param name="L1StartPoint">The starting point of first line. A PointD structure.</param>
/// <param name="L1EndPoint">The end point of first line. A PointD structure.</param>
/// <param name="L2StartPoint">The starting point of second line. A PointD structure.</param>
/// <param name="L2EndPoint">The end point of second line. A PointD structure.</param>
/// <param name="L1IntersectPos">The intersection position at first line.</param>
/// <param name="L2IntersectPos">The intersection position at second line.</param>
/// <returns>Returns a boolean. True if there is intersection, false otherwise.</returns>
/// <remarks>The formula is taken from comp.graphics.algorithms Frequently Asked Questions.</remarks>
public static bool LineIntersect(out PointD IntersectPoint, PointD L1StartPoint, PointD L1EndPoint, PointD L2StartPoint, PointD L2EndPoint, out double L1IntersectPos, out double L2IntersectPos)
{
IntersectPoint = new PointD();
double ay_cy, ax_cx, px, py;
double dx_cx = L2EndPoint.X - L2StartPoint.X,
dy_cy = L2EndPoint.Y - L2StartPoint.Y,
bx_ax = L1EndPoint.X - L1StartPoint.X,
by_ay = L1EndPoint.Y - L1StartPoint.Y;
double de = (bx_ax) * (dy_cy) - (by_ay) * (dx_cx);
//double tor = 1.0E-10; //tolerance
L1IntersectPos = 0; L2IntersectPos = 0;
if (Math.Abs(de)<0.01)
return false;
//if (de > -tor && de < tor) return false; //line is in parallel
ax_cx = L1StartPoint.X - L2StartPoint.X;
ay_cy = L1StartPoint.Y - L2StartPoint.Y;
double r = ((ay_cy) * (dx_cx) - (ax_cx) * (dy_cy)) / de;
double s = ((ay_cy) * (bx_ax) - (ax_cx) * (by_ay)) / de;
px = L1StartPoint.X + r * (bx_ax);
py = L1StartPoint.Y + r * (by_ay);
IntersectPoint.X = px; //return the intersection point
IntersectPoint.Y = py; //return the intersection position
L1IntersectPos = r; L2IntersectPos = s;
return true; //indicate there is intersection
}
To check whether the intersection point is not beyond the original length of the line, just make sure that 0<r<1
and 0<s<1
Below is my line-line intersection as described in MathWorld. For general collision detection/intersection you may want to look at the Separating Axis Theorem. I found this tutorial on SAT very informative.
/// <summary>
/// Returns the intersection point of the given lines.
/// Returns Empty if the lines do not intersect.
/// Source: http://mathworld.wolfram.com/Line-LineIntersection.html
/// </summary>
public static PointF LineIntersection(PointF v1, PointF v2, PointF v3, PointF v4)
{
float tolerance = 0.000001f;
float a = Det2(v1.X - v2.X, v1.Y - v2.Y, v3.X - v4.X, v3.Y - v4.Y);
if (Math.Abs(a) < float.Epsilon) return PointF.Empty; // Lines are parallel
float d1 = Det2(v1.X, v1.Y, v2.X, v2.Y);
float d2 = Det2(v3.X, v3.Y, v4.X, v4.Y);
float x = Det2(d1, v1.X - v2.X, d2, v3.X - v4.X) / a;
float y = Det2(d1, v1.Y - v2.Y, d2, v3.Y - v4.Y) / a;
if (x < Math.Min(v1.X, v2.X) - tolerance || x > Math.Max(v1.X, v2.X) + tolerance) return PointF.Empty;
if (y < Math.Min(v1.Y, v2.Y) - tolerance || y > Math.Max(v1.Y, v2.Y) + tolerance) return PointF.Empty;
if (x < Math.Min(v3.X, v4.X) - tolerance || x > Math.Max(v3.X, v4.X) + tolerance) return PointF.Empty;
if (y < Math.Min(v3.Y, v4.Y) - tolerance || y > Math.Max(v3.Y, v4.Y) + tolerance) return PointF.Empty;
return new PointF(x, y);
}
/// <summary>
/// Returns the determinant of the 2x2 matrix defined as
/// <list>
/// <item>| x1 x2 |</item>
/// <item>| y1 y2 |</item>
/// </list>
/// </summary>
public static float Det2(float x1, float x2, float y1, float y2)
{
return (x1 * y2 - y1 * x2);
}
(I would leave this as a comment, except I haven't yet figured out how to do so.)
I would just like to add, as an alternative/complement to a bounding box test, you could also test to see if the distance between the mid-points of the lines are greater than half of the combined length of the lines. If so, the lines can't possibly intersect.
Imagine a minimal enclosing circle for each line, then test circle intersection. This allows for pre-computation (at least for static lines, and lines that preserve their length) and an efficient way to exclude a lot of potential intersections.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With