I Have Dataframe with a lot of columns (Around 100 feature), I want to apply the interquartile method and wanted to remove the outlier from the data frame.
I am using this link stackOverflow
But the problem is nan of the above method is working correctly,
As I am trying like this
Q1 = stepframe.quantile(0.25)
Q3 = stepframe.quantile(0.75)
IQR = Q3 - Q1
((stepframe < (Q1 - 1.5 * IQR)) | (stepframe > (Q3 + 1.5 * IQR))).sum()
it is giving me this
((stepframe < (Q1 - 1.5 * IQR)) | (stepframe > (Q3 + 1.5 * IQR))).sum()
Out[35]:
Day 0
Col1 0
Col2 0
col3 0
Col4 0
Step_Count 1179
dtype: int64
I just wanted to know that, What I will do next so that all the outlier from the data frame will be removed.
if i am using this
def remove_outlier(df_in, col_name):
q1 = df_in[col_name].quantile(0.25)
q3 = df_in[col_name].quantile(0.75)
iqr = q3-q1 #Interquartile range
fence_low = q1-1.5*iqr
fence_high = q3+1.5*iqr
df_out = df_in.loc[(df_in[col_name] > fence_low) & (df_in[col_name] < fence_high)]
return df_out
re_dat = remove_outlier(stepframe, stepframe.columns)
I am getting this error
ValueError: Cannot index with multidimensional key
in this line
df_out = df_in.loc[(df_in[col_name] > fence_low) & (df_in[col_name] < fence_high)]
You can use:
np.random.seed(33454)
stepframe = pd.DataFrame({'a': np.random.randint(1, 200, 20),
'b': np.random.randint(1, 200, 20),
'c': np.random.randint(1, 200, 20)})
stepframe[stepframe > 150] *= 10
print (stepframe)
Q1 = stepframe.quantile(0.25)
Q3 = stepframe.quantile(0.75)
IQR = Q3 - Q1
df = stepframe[~((stepframe < (Q1 - 1.5 * IQR)) |(stepframe > (Q3 + 1.5 * IQR))).any(axis=1)]
print (df)
a b c
1 109 50 124
3 137 60 1990
4 19 138 100
5 86 83 143
6 55 23 58
7 78 145 18
8 132 39 65
9 37 146 1970
13 67 148 1880
15 124 102 21
16 93 61 56
17 84 21 25
19 34 52 126
Details:
First create boolean DataFrame
with chain by |
:
print (((stepframe < (Q1 - 1.5 * IQR)) | (stepframe > (Q3 + 1.5 * IQR))))
a b c
0 False True False
1 False False False
2 True False False
3 False False False
4 False False False
5 False False False
6 False False False
7 False False False
8 False False False
9 False False False
10 True False False
11 False True False
12 False True False
13 False False False
14 False True False
15 False False False
16 False False False
17 False False False
18 False True False
19 False False False
And then use DataFrame.any
for check at least one True
per row and last invert boolean mask by ~
:
print (~((stepframe < (Q1 - 1.5 * IQR)) | (stepframe > (Q3 + 1.5 * IQR))).any(axis=1))
0 False
1 True
2 False
3 True
4 True
5 True
6 True
7 True
8 True
9 True
10 False
11 False
12 False
13 True
14 False
15 True
16 True
17 True
18 False
19 True
dtype: bool
invert
solution with changed conditions - <
to >=
and >
to <=
, chain by &
for AND and last filter by all
for check all True
s per rows
print (((stepframe >= (Q1 - 1.5 * IQR)) & (stepframe <= (Q3 + 1.5 * IQR))).all(axis=1))
0 False
1 True
2 False
3 True
4 True
5 True
6 True
7 True
8 True
9 True
10 False
11 False
12 False
13 True
14 False
15 True
16 True
17 True
18 False
19 True
dtype: bool
df = stepframe[((stepframe >= (Q1 - 1.5 * IQR))& (stepframe <= (Q3 + 1.5 * IQR))).all(axis=1)]
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With