Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

How to plot an animated matrix in matplotlib

I need to do step by step some numerical calculation algorithms visually, as in the figure below: (gif)

Matrix animation Font

How can I do this animation with matplotlib? Is there any way to visually present these transitions? As transformation of matrices, sum, transposition, using a loop and it presenting the transitions etc. My goal is not to use graphics but the same matrix representation. This is to facilitate the understanding of the algorithms.

like image 901
mrlucasrib Avatar asked Aug 29 '18 00:08

mrlucasrib


1 Answers

Since matrices can be plotted easily with imshow, one could create such table with an imshow plot and adjust the data according to the current animation step.

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker as mticker
import matplotlib.animation

#####################
# Array preparation
#####################

#input array
a = np.random.randint(50,150, size=(5,5))
# kernel
kernel = np.array([[ 0,-1, 0], [-1, 5,-1], [ 0,-1, 0]])

# visualization array (2 bigger in each direction)
va = np.zeros((a.shape[0]+2, a.shape[1]+2), dtype=int)
va[1:-1,1:-1] = a

#output array
res = np.zeros_like(a)

#colorarray
va_color = np.zeros((a.shape[0]+2, a.shape[1]+2)) 
va_color[1:-1,1:-1] = 0.5

#####################
# Create inital plot
#####################
fig = plt.figure(figsize=(8,4))

def add_axes_inches(fig, rect):
    w,h = fig.get_size_inches()
    return fig.add_axes([rect[0]/w, rect[1]/h, rect[2]/w, rect[3]/h])

axwidth = 3.
cellsize = axwidth/va.shape[1]
axheight = cellsize*va.shape[0]

ax_va  = add_axes_inches(fig, [cellsize, cellsize, axwidth, axheight])
ax_kernel  = add_axes_inches(fig, [cellsize*2+axwidth,
                                   (2+res.shape[0])*cellsize-kernel.shape[0]*cellsize,
                                   kernel.shape[1]*cellsize,  
                                   kernel.shape[0]*cellsize])
ax_res = add_axes_inches(fig, [cellsize*3+axwidth+kernel.shape[1]*cellsize,
                               2*cellsize, 
                               res.shape[1]*cellsize,  
                               res.shape[0]*cellsize])
ax_kernel.set_title("Kernel", size=12)

im_va = ax_va.imshow(va_color, vmin=0., vmax=1.3, cmap="Blues")
for i in range(va.shape[0]):
    for j in range(va.shape[1]):
        ax_va.text(j,i, va[i,j], va="center", ha="center")

ax_kernel.imshow(np.zeros_like(kernel), vmin=-1, vmax=1, cmap="Pastel1")
for i in range(kernel.shape[0]):
    for j in range(kernel.shape[1]):
        ax_kernel.text(j,i, kernel[i,j], va="center", ha="center")


im_res = ax_res.imshow(res, vmin=0, vmax=1.3, cmap="Greens")
res_texts = []
for i in range(res.shape[0]):
    row = []
    for j in range(res.shape[1]):
        row.append(ax_res.text(j,i, "", va="center", ha="center"))
    res_texts.append(row)    


for ax  in [ax_va, ax_kernel, ax_res]:
    ax.tick_params(left=False, bottom=False, labelleft=False, labelbottom=False)
    ax.yaxis.set_major_locator(mticker.IndexLocator(1,0))
    ax.xaxis.set_major_locator(mticker.IndexLocator(1,0))
    ax.grid(color="k")

###############
# Animation
###############
def init():
    for row in res_texts:
        for text in row:
            text.set_text("")

def animate(ij):
    i,j=ij
    o = kernel.shape[1]//2
    # calculate result
    res_ij = (kernel*va[1+i-o:1+i+o+1, 1+j-o:1+j+o+1]).sum()
    res_texts[i][j].set_text(res_ij)
    # make colors
    c = va_color.copy()
    c[1+i-o:1+i+o+1, 1+j-o:1+j+o+1] = 1.
    im_va.set_array(c)

    r = res.copy()
    r[i,j] = 1
    im_res.set_array(r)

i,j = np.indices(res.shape)
ani = matplotlib.animation.FuncAnimation(fig, animate, init_func=init, 
                                         frames=zip(i.flat, j.flat), interval=400)
ani.save("algo.gif", writer="imagemagick")
plt.show()

enter image description here

like image 179
ImportanceOfBeingErnest Avatar answered Oct 05 '22 04:10

ImportanceOfBeingErnest