I would like to pre-compute by-variable summaries of data (with plyr
and passing a quantile
function) and then plot with geom_boxplot(stat = "identity")
. This works great except it (a) does not plot outliers as points and (b) extends the "whiskers" to the max and min of the data being plotted.
Example:
library(plyr)
library(ggplot2)
set.seed(4)
df <- data.frame(fact = sample(letters[1:2], 12, replace = TRUE),
val = c(1:10, 100, 101))
df
# fact val
# 1 b 1
# 2 a 2
# 3 a 3
# 4 a 4
# 5 b 5
# 6 a 6
# 7 b 7
# 8 b 8
# 9 b 9
# 10 a 10
# 11 b 100
# 12 a 101
by.fact.df <- ddply(df, c("fact"), function(x) quantile(x$val))
by.fact.df
# fact 0% 25% 50% 75% 100%
# 1 a 2 3.25 5.0 9.00 101
# 2 b 1 5.50 7.5 8.75 100
# What I can do...with faults (a) and (b) above
ggplot(by.fact.df,
aes(x = fact, ymin = `0%`, lower = `25%`, middle = `50%`,
upper = `75%`, ymax = `100%`)) +
geom_boxplot(stat = "identity")
# What I want...
ggplot(df, aes(x = fact, y = val)) +
geom_boxplot()
What I can do...with faults (a) and (b) mentioned above:
What I would like to obtain, but still leverage pre-computation via plyr
(or other method):
Initial Thoughts: Perhaps there is some way to pre-compute the true end-points of the whiskers without the outliers? Then, subset the data for outliers and pass them as geom_point()
?
Motivation: When working with larger datasets, I have found it faster and more practical to leverage plyr
, dplyr
, and/or data.table
to pre-compute the stats and then plot them rather than having ggplot2
to the calculations.
I am able to extract what I need with the following mix of dplyr
and plyr
code, but I'm not sure if this is the most efficient way:
df %>%
group_by(fact) %>%
do(ldply(boxplot.stats(.$val), data.frame))
Source: local data frame [6 x 3]
Groups: fact
fact .id X..i..
1 a stats 2
2 a stats 4
3 a stats 10
4 a stats 13
5 a stats 16
6 a n 9
Here's my answer, using built-in functions quantile
and boxplot.stats
.
geom_boxplot
does the calcualtions for boxplot slightly differently than boxplot.stats
. Read ?geom_boxplot
and ?boxplot.stats
to understand my implementation below
#Function to calculate boxplot stats to match ggplot's implemention as in geom_boxplot.
my_boxplot.stats <-function(x){
quantiles <-quantile(x, c(0, 0.25, 0.5, 0.75, 1))
labels <-names(quantile(x))
#replacing the upper whisker to geom_boxplot
quantiles[5] <-boxplot.stats(x)$stats[5]
res <-data.frame(rbind(quantiles))
names(res) <-labels
res$out <-boxplot.stats(x)$out
return(res)
}
Code to calculate the stats and plot it
library(dplyr)
df %>% group_by(fact) %>% do(my_boxplot.stats(.$val)) %>%
ggplot(aes(x=fact, y=out, ymin = `0%`, lower = `25%`, middle = `50%`,
upper = `75%`, ymax = `100%`)) +
geom_boxplot(stat = "identity") + geom_point()
To get the correct statistics, you have to do some more calculations than just finding the quantiles. The geom_boxplot
function with stat = "identity"
does not draw the outliers. So you have to calculate the statistics without the outliers and then use geom_point
to draw the outliers seperately. The following function (basically a simplified version of stat_boxplot
) is probably not the most efficient, but it gives the desired result:
box.df <- df %>% group_by(fact) %>% do({
stats <- as.numeric(quantile(.$val, c(0, 0.25, 0.5, 0.75, 1)))
iqr <- diff(stats[c(2, 4)])
coef <- 1.5
outliers <- .$val < (stats[2] - coef * iqr) | .$val > (stats[4] + coef * iqr)
if (any(outliers)) {
stats[c(1, 5)] <- range(c(stats[2:4], .$val[!outliers]), na.rm=TRUE)
}
outlier_values = .$val[outliers]
if (length(outlier_values) == 0) outlier_values <- NA_real_
res <- as.list(t(stats))
names(res) <- c("lower.whisker", "lower.hinge", "median", "upper.hinge", "upper.whisker")
res$out <- outlier_values
as.data.frame(res)
})
box.df
## Source: local data frame [2 x 7]
## Groups: fact
##
## fact lower.whisker lower.hinge median upper.hinge upper.whisker out
## 1 a 2 3.25 5.0 9.00 10 101
## 2 b 1 5.50 7.5 8.75 9 100
ggplot(box.df, aes(x = fact, y = out, middle = median,
ymin = lower.whisker, ymax = upper.whisker,
lower = lower.hinge, upper = upper.hinge)) +
geom_boxplot(stat = "identity") +
geom_point()
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With