I have a pandas dataframe that looks roughly like
foo foo2 foo3 foo4
a NY WA AZ NaN
b DC NaN NaN NaN
c MA CA NaN NaN
I'd like to make a nested list of the observations of this dataframe, but omit the NaN values, so I have something like [['NY','WA','AZ'],['DC'],['MA',CA'].
There is a pattern in this dataframe, if that makes a difference, such that if fooX is empty, the subsequent column fooY will also be empty.
I originally had something like this code below. I'm sure there's a nicer way to do this
A = [[i] for i in subset_label['label'].tolist()]
B = [i for i in subset_label['label2'].tolist()]
C = [i for i in subset_label['label3'].tolist()]
D = [i for i in subset_label['label4'].tolist()]
out_list = []
for index, row in subset_label.iterrows():
out_list.append([row.label, row.label2, row.label3, row.label4])
out_list
Try this:
In [77]: df.T.apply(lambda x: x.dropna().tolist()).tolist()
Out[77]: [['NY', 'WA', 'AZ'], ['DC'], ['MA', 'CA']]
Option 1pd.DataFrame.stack
drops na by default.
df.stack().groupby(level=0).apply(list).tolist()
[['NY', 'WA', 'AZ'], ['DC'], ['MA', 'CA']]
___
Option 2
Fun alternative, because I think summing lists within pandas objects is fun.
df.applymap(lambda x: [x] if pd.notnull(x) else []).sum(1).tolist()
[['NY', 'WA', 'AZ'], ['DC'], ['MA', 'CA']]
Option 3numpy
experiment
nn = df.notnull().values
sliced = df.values.ravel()[nn.ravel()]
splits = nn.sum(1)[:-1].cumsum()
[s.tolist() for s in np.split(sliced, splits)]
[['NY', 'WA', 'AZ'], ['DC'], ['MA', 'CA']]
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With