HashMap
implements the get
and insert
methods which take a single immutable borrow and a single move of a value respectively.
I want a trait which is just like this but which takes two keys instead of one. It uses the map inside, but it's just a detail of implementation.
pub struct Table<A: Eq + Hash, B: Eq + Hash> { map: HashMap<(A, B), f64>, } impl<A: Eq + Hash, B: Eq + Hash> Memory<A, B> for Table<A, B> { fn get(&self, a: &A, b: &B) -> f64 { let key: &(A, B) = ??; *self.map.get(key).unwrap() } fn set(&mut self, a: A, b: B, v: f64) { self.map.insert((a, b), v); } }
You can't have an hash map with multiple keys, but you can have an object that takes multiple parameters as the key. Create an object called Index that takes an x and y value. Then have your HashMap<Index, Value> to get your result. :) You need to override hashCode and equals .
Duplicates: HashSet doesn't allow duplicate values. HashMap stores key, value pairs and it does not allow duplicate keys.
Class MultiKeyMap<K,V> A Map implementation that uses multiple keys to map the value. This class is the most efficient way to uses multiple keys to map to a value. The best way to use this class is via the additional map-style methods.
This is certainly possible. The signature of get
is
fn get<Q: ?Sized>(&self, k: &Q) -> Option<&V> where K: Borrow<Q>, Q: Hash + Eq,
The problem here is to implement a &Q
type such that
(A, B): Borrow<Q>
Q
implements Hash + Eq
To satisfy condition (1), we need to think of how to write
fn borrow(self: &(A, B)) -> &Q
The trick is that &Q
does not need to be a simple pointer, it can be a trait object! The idea is to create a trait Q
which will have two implementations:
impl Q for (A, B) impl Q for (&A, &B)
The Borrow
implementation will simply return self
and we can construct a &dyn Q
trait object from the two elements separately.
The full implementation is like this:
use std::borrow::Borrow; use std::collections::HashMap; use std::hash::{Hash, Hasher}; // See explanation (1). trait KeyPair<A, B> { /// Obtains the first element of the pair. fn a(&self) -> &A; /// Obtains the second element of the pair. fn b(&self) -> &B; } // See explanation (2). impl<'a, A, B> Borrow<dyn KeyPair<A, B> + 'a> for (A, B) where A: Eq + Hash + 'a, B: Eq + Hash + 'a, { fn borrow(&self) -> &(dyn KeyPair<A, B> + 'a) { self } } // See explanation (3). impl<A: Hash, B: Hash> Hash for dyn KeyPair<A, B> + '_ { fn hash<H: Hasher>(&self, state: &mut H) { self.a().hash(state); self.b().hash(state); } } impl<A: Eq, B: Eq> PartialEq for dyn KeyPair<A, B> + '_ { fn eq(&self, other: &Self) -> bool { self.a() == other.a() && self.b() == other.b() } } impl<A: Eq, B: Eq> Eq for dyn KeyPair<A, B> + '_ {} // OP's Table struct pub struct Table<A: Eq + Hash, B: Eq + Hash> { map: HashMap<(A, B), f64>, } impl<A: Eq + Hash, B: Eq + Hash> Table<A, B> { fn new() -> Self { Table { map: HashMap::new(), } } fn get(&self, a: &A, b: &B) -> f64 { *self.map.get(&(a, b) as &dyn KeyPair<A, B>).unwrap() } fn set(&mut self, a: A, b: B, v: f64) { self.map.insert((a, b), v); } } // Boring stuff below. impl<A, B> KeyPair<A, B> for (A, B) { fn a(&self) -> &A { &self.0 } fn b(&self) -> &B { &self.1 } } impl<A, B> KeyPair<A, B> for (&A, &B) { fn a(&self) -> &A { self.0 } fn b(&self) -> &B { self.1 } } //---------------------------------------------------------------- #[derive(Eq, PartialEq, Hash)] struct A(&'static str); #[derive(Eq, PartialEq, Hash)] struct B(&'static str); fn main() { let mut table = Table::new(); table.set(A("abc"), B("def"), 4.0); table.set(A("123"), B("456"), 45.0); println!("{:?} == 45.0?", table.get(&A("123"), &B("456"))); println!("{:?} == 4.0?", table.get(&A("abc"), &B("def"))); // Should panic below. println!("{:?} == NaN?", table.get(&A("123"), &B("def"))); }
Explanation:
The KeyPair
trait takes the role of Q
we mentioned above. We'd need to impl Eq + Hash for dyn KeyPair
, but Eq
and Hash
are both not object safe. We add the a()
and b()
methods to help implementing them manually.
Now we implement the Borrow
trait from (A, B)
to dyn KeyPair + 'a
. Note the 'a
— this is a subtle bit that is needed to make Table::get
actually work. The arbitrary 'a
allows us to say that an (A, B)
can be borrowed to the trait object for any lifetime. If we don't specify the 'a
, the unsized trait object will default to 'static
, meaning the Borrow
trait can only be applied when the implementation like (&A, &B)
outlives 'static
, which is certainly not the case.
Finally, we implement Eq
and Hash
. Same reason as point 2, we implement for dyn KeyPair + '_
instead of dyn KeyPair
(which means dyn KeyPair + 'static
in this context). The '_
here is a syntax sugar meaning arbitrary lifetime.
Using trait objects will incur indirection cost when computing the hash and checking equality in get()
. The cost can be eliminated if the optimizer is able to devirtualize that, but whether LLVM will do it is unknown.
An alternative is to store the map as HashMap<(Cow<A>, Cow<B>), f64>
. Using this requires less "clever code", but there is now a memory cost to store the owned/borrowed flag as well as runtime cost in both get()
and set()
.
Unless you fork the standard HashMap
and add a method to look up an entry via Hash + Eq
alone, there is no guaranteed-zero-cost solution.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With