I would like to apply 1D interploation to each element of a tensor in Tensorflow.
For example, if it is a matrix, we can use interp1d
.
from scipy.interpolate import interp1d
q = np.array([[2, 3], [5, 6]]) # query
x = [1, 3, 5, 7, 9] # profile x
y = [3, 4, 5, 6, 7] # profile y
fn = interp1d(x, y)
# fn(q) == [[ 3.5, 4.], [5., 5.5]]
If we have a tensor q
,
q = tf.placeholder(shape=[2,2], dtype=tf.float32)
How can I have equivalent element-wise 1D interpolation? Could anyone help?
I am using a wrapper for this:
import numpy as np
import tensorflow as tf
from scipy.interpolate import interp1d
x = [1, 3, 5, 7, 9]
y = [3, 4, 5, 6, 7]
intFn = interp1d(x, y)
def fn(m):
return intFn(m).astype(np.float32)
q = tf.placeholder(shape=[2,2], dtype=tf.float32)
q1 = np.array([[2, 3], [5, 6]]).astype(np.float32)
f1 = tf.py_func(fn, [q], tf.float32)
with tf.Session() as sess:
init = tf.global_variables_initializer()
sess.run(init)
result = sess.run(f1, feed_dict={q:q1})
print(result)
Not the best solution. Hoping that tensor flow will implement more of the functionality within numpy and scipy ...
I have written a simple tensorflow function that might be useful. Unfortunately, this is will only do one value at a time. However, if it is interesting, this might be something that might be improved upon ...
def interpolate( dx_T, dy_T, x, name='interpolate' ):
with tf.variable_scope(name):
with tf.variable_scope('neighbors'):
delVals = dx_T - x
ind_1 = tf.argmax(tf.sign( delVals ))
ind_0 = ind_1 - 1
with tf.variable_scope('calculation'):
value = tf.cond( x[0] <= dx_T[0],
lambda : dy_T[:1],
lambda : tf.cond(
x[0] >= dx_T[-1],
lambda : dy_T[-1:],
lambda : (dy_T[ind_0] + \
(dy_T[ind_1] - dy_T[ind_0]) \
*(x-dx_T[ind_0])/ \
(dx_T[ind_1]-dx_T[ind_0]))
))
result = tf.multiply(value[0], 1, name='y')
return result
This creates a resultant tensor, given a couple of tensors. Here is an example implementation. First create a graph ...
tf.reset_default_graph()
with tf.variable_scope('inputs'):
dx_T = tf.placeholder(dtype=tf.float32, shape=(None,), name='dx')
dy_T = tf.placeholder(dtype=tf.float32, shape=(None,), name='dy')
x_T = tf.placeholder(dtype=tf.float32, shape=(1,), name='inpValue')
y_T = interpolate( dx_T, dy_T, x_T, name='interpolate' )
init = tf.global_variables_initializer()
Now you can use it like so:
x = [1, 3, 5, 7, 9] # profile x
y = [3, 4, 5, 6, 7] # profile y
q = np.array([[2, 3], [5, 6]])
with tf.Session() as sess:
sess.run(init)
for i in q.flatten():
result = sess.run(y_T,
feed_dict={
'inputs/dx:0' : x,
'inputs/dy:0' : y,
'inputs/inpValue:0' : np.array([i])
})
print('{:6.3f} -> {}'.format(i, result))
And you will get the desired result ...
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With