I'm now implementing seq2seq model based on the example code that tensorflow
provides. And I want to get a top-5 decoder outputs to do a reinforcement learning.
However, they implemented translation model with attention decoder so, I should implement beam-search for getting top-k results.
There is a part of code that now implement (this code is added to translate.py
).
Reference by https://github.com/tensorflow/tensorflow/issues/654
with tf.Graph().as_default():
beam_size = FLAGS.beam_size # Number of hypotheses in beam
num_symbols = FLAGS.tar_vocab_size # Output vocabulary size
embedding_size = 10
num_steps = 5
embedding = tf.zeros([num_symbols, embedding_size])
output_projection = None
log_beam_probs, beam_symbols, beam_path = [], [], []
def beam_search(prev, i):
if output_projection is not None:
prev = tf.nn.xw_plus_b(prev, output_projection[0], output_projection[1])
probs = tf.log(tf.nn.softmax(prev))
if i > 1:
probs = tf.reshape(probs + log_beam_probs[-1], [-1, beam_size * num_symbols])
best_probs, indices = tf.nn.top_k(probs, beam_size)
indices = tf.stop_gradient(tf.squeeze(tf.reshape(indices, [-1, 1])))
best_probs = tf.stop_gradient(tf.reshape(best_probs, [-1, 1]))
symbols = indices % num_symbols # which word in vocabulary
beam_parent = indices // num_symbols # which hypothesis it came from
beam_symbols.append(symbols)
beam_path.append(beam_parent)
log_beam_probs.append(best_probs)
return tf.nn.embedding_lookup(embedding, symbols)
# Setting up graph.
inputs = [tf.placeholder(tf.float32, shape=[None, num_symbols]) for i in range(num_steps)]
for i in range(num_steps):
beam_search(inputs[i], i+1)
input_vals = tf.zeros([1, beam_size], dtype=tf.float32)
input_feed = {inputs[i]: input_vals[i][:beam_size, :] for i in xrange(num_steps)}
output_feed = beam_symbols + beam_path + log_beam_probs
session = tf.InteractiveSession()
outputs = session.run(output_feed, feed_dict=input_feed)
print("Top_5 Sentences ")
for predicted in enumerate(outputs[:5]):
print(list(predicted))
print("\n")
In input_feed part, there is an error:
ValueError: Shape (1, 12) must have rank 1
Is there any problem on my code to do beam-search?
This search algorithm is often used translation. Beam search is most often used at test time, not during training.
Beam search is a heuristic search technique that always expands the W number of the best nodes at each level. It progresses level by level and moves downwards only from the best W nodes at each level. Beam Search uses breadth-first search to build its search tree.
The seq2seq model is an architecture based on the multiple LSTM network or sometimes a GRU. Under the hood the model comprises two main components: encoder and decoder.
A Seq2Seq model is a model that takes a sequence of items (words, letters, time series, etc) and outputs another sequence of items. In the case of Neural Machine Translation, the input is a series of words, and the output is the translated series of words.
A tried and true demo:
# -*- coding: utf-8 -*-
from __future__ import unicode_literals, print_function
from __future__ import absolute_import
from __future__ import division
import tensorflow as tf
tf.app.flags.DEFINE_integer('beam_size', 4, 'beam size for beam search decoding.')
tf.app.flags.DEFINE_integer('vocab_size', 40, 'vocabulary size.')
tf.app.flags.DEFINE_integer('batch_size', 5, 'the batch size.')
tf.app.flags.DEFINE_integer('num_steps', 10, 'the batch size.')
tf.app.flags.DEFINE_integer('embedding_size', 50, 'the batch size.')
FLAGS = tf.app.flags.FLAGS
with tf.Graph().as_default():
batch_size = FLAGS.batch_size
beam_size = FLAGS.beam_size # Number of hypotheses in beam
vocab_size = FLAGS.vocab_size # Output vocabulary size
num_steps = FLAGS.num_steps
embedding_size = FLAGS.embedding_size
embedding = tf.random_normal([vocab_size, embedding_size], -2, 4, dtype=tf.float32, seed=0)
output_projection = [
tf.random_normal([embedding_size, vocab_size], mean=2, stddev=1, dtype=tf.float32, seed=0),
tf.random_normal([vocab_size], mean=0, stddev=1, dtype=tf.float32, seed=0),
]
index_base = tf.reshape(
tf.tile(tf.expand_dims(tf.range(batch_size) * beam_size, axis=1), [1, beam_size]), [-1])
log_beam_probs, beam_symbols = [], []
def beam_search(prev, i):
if output_projection is not None:
prev = tf.nn.xw_plus_b(prev, output_projection[0], output_projection[1])
# (batch_size*beam_size, embedding_size) -> (batch_size*beam_size, vocab_size)
log_probs = tf.nn.log_softmax(prev)
if i > 1:
# total probability
log_probs = tf.reshape(tf.reduce_sum(tf.stack(log_beam_probs, axis=1), axis=1) + log_probs,
[-1, beam_size * vocab_size])
# (batch_size*beam_size, vocab_size) -> (batch_size, beam_size*vocab_size)
best_probs, indices = tf.nn.top_k(log_probs, beam_size)
# (batch_size, beam_size)
indices = tf.squeeze(tf.reshape(indices, [-1, 1]))
best_probs = tf.reshape(best_probs, [-1, 1])
# (batch_size*beam_size)
symbols = indices % vocab_size # which word in vocabulary
beam_parent = indices // vocab_size # which hypothesis it came from
beam_symbols.append(symbols)
# (batch_size*beam_size, num_steps)
real_path = beam_parent + index_base
# get rid of the previous probability
if i > 1:
pre_sum = tf.reduce_sum(tf.stack(log_beam_probs, axis=1), axis=1)
pre_sum = tf.gather(pre_sum, real_path)
else:
pre_sum = 0
log_beam_probs.append(best_probs-pre_sum)
# adapt the previous symbols according to the current symbol
if i > 1:
for j in range(i)[:0:-1]:
beam_symbols[j-1] = tf.gather(beam_symbols[j-1], real_path)
log_beam_probs[j-1] = tf.gather(log_beam_probs[j-1], real_path)
return tf.nn.embedding_lookup(embedding, symbols)
# (batch_size*beam_size, embedding_size)
# Setting up graph.
init_input = tf.placeholder(tf.float32, shape=[batch_size, embedding_size])
next_input = init_input
for i in range(num_steps):
next_input = beam_search(next_input, i+1)
seq_rank = tf.stack(values=beam_symbols, axis=1)
seq_rank = tf.reshape(seq_rank, [batch_size, beam_size, num_steps])
# (batch_size*beam_size, num_steps)
init_in = tf.random_uniform([batch_size], minval=0, maxval=vocab_size, dtype=tf.int32, seed=0),
init_emb = tf.squeeze(tf.nn.embedding_lookup(embedding, init_in))
session = tf.InteractiveSession()
init_emb = init_emb.eval()
seq_rank = session.run(seq_rank, feed_dict={init_input: init_emb})
best_seq = seq_rank[:, 1, :]
for i in range(batch_size):
print("rank %s" % i, end=": ")
print(best_seq[i])
It is simplified from the beam search model in my seq2seq model. Python2.7 and TF1.4
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With