In Python, I can find the Unix time stamp of a local time, knowing the time zone, like this (using pytz):
>>> import datetime as DT
>>> import pytz
>>> mtl = pytz.timezone('America/Montreal')
>>> naive_time3 = DT.datetime.strptime('2013/11/03', '%Y/%m/%d')
>>> naive_time3
datetime.datetime(2013, 11, 3, 0, 0)
>>> localized_time3 = mtl.localize(naive_time3)
>>> localized_time3
datetime.datetime(2013, 11, 3, 0, 0, tzinfo=<DstTzInfo 'America/Montreal' EDT-1 day, 20:00:00 DST>)
>>> localized_time3.timestamp()
1383451200.0
So far, so good. naive_time
is not aware of the time zone, whereas localized_time
knows its midnight on 2013/11/03 in Montréal, so the (UTC) Unix time stamp is good. This time zone is also my local time zone and this time stamp seems right:
$ date -d @1383451200
Sun Nov 3 00:00:00 EDT 2013
Now, clocks were adjusted one hour backward November 3rd at 2:00 here in Montréal, so we gained an extra hour that day. This means that there were, here, 25 hours between 2013/11/03 and 2013/11/04. This shows it:
>>> naive_time4 = DT.datetime.strptime('2013/11/04', '%Y/%m/%d')
>>> localized_time4 = mtl.localize(naive_time4)
>>> localized_time4
datetime.datetime(2013, 11, 4, 0, 0, tzinfo=<DstTzInfo 'America/Montreal' EST-1 day, 19:00:00 STD>)
>>> (localized_time4.timestamp() - localized_time3.timestamp()) / 3600
25.0
Now, I'm looking for an easy way to get the localized_time4
object from localized_time3
, knowing I want to get the next localized day at the same hour (here, midnight). I tried timedelta
, but I believe it's not aware of time zones or DST:
>>> localized_time4td = localized_time3 + DT.timedelta(1)
>>> localized_time4td
datetime.datetime(2013, 11, 4, 0, 0, tzinfo=<DstTzInfo 'America/Montreal' EDT-1 day, 20:00:00 DST>)
>>> (localized_time4td.timestamp() - localized_time3.timestamp()) / 3600
24.0
My purpose is to get informations about log entries that are stored with their Unix timestamp for each local day. Of course, if I use localized_time3.timestamp()
and add 24 * 3600
here (which will be the same as localized_time4td.timestamp()
), I will miss all log entries that happened between localized_time4td.timestamp()
and localized_time4td.timestamp() + 3600
.
In other words, the function or method I'm looking for should know when to add 25 hours, 24 hours or 23 hours sometimes to a Unix time stamp, depending on when DST shifts happen.
Without using a new package:
def add_day(x):
d = x.date()+DT.timedelta(1)
return mtl.localize(x.replace(year=d.year, month=d.month, day=d.day, tzinfo=None))
Full script:
import datetime as DT
import pytz
import calendar
mtl = pytz.timezone('America/Montreal')
naive_time3 = DT.datetime.strptime('2013/11/03', '%Y/%m/%d')
print repr(naive_time3)
#datetime.datetime(2013, 11, 3, 0, 0)
localized_time3 = mtl.localize(naive_time3)
print repr(localized_time3)
#datetime.datetime(2013, 11, 3, 0, 0, tzinfo=<DstTzInfo 'America/Montreal' EDT-1 day, 20:00:00 DST>)
print calendar.timegm(localized_time3.utctimetuple())
#1383451200.0
def add_day(x):
d = x.date()+DT.timedelta(1)
return mtl.localize(x.replace(year=d.year, month=d.month, day=d.day, tzinfo=None))
print repr(add_day(localized_time3))
#datetime.datetime(2013, 11, 4, 0, 0, tzinfo=<DstTzInfo 'America/Montreal' EST-1 day, 19:00:00 STD>)
(calendar
is for Python2.)
I gradually provide several solutions with the most robust solution at the very end of this answer that tries to handle the following issues:
dateutil
and stdlib solutions fail here on some systems, notably WindowsArrow
provides interface to handle it)To find POSIX timestamp for tomorrow's midnight (or other fixed hour) in a given timezone, you could use code from How do I get the UTC time of “midnight” for a given timezone?:
from datetime import datetime, time, timedelta
import pytz
DAY = timedelta(1)
tz = pytz.timezone('America/Montreal')
tomorrow = datetime(2013, 11, 3).date() + DAY
midnight = tz.localize(datetime.combine(tomorrow, time(0, 0)), is_dst=None)
timestamp = (midnight - datetime(1970, 1, 1, tzinfo=pytz.utc)).total_seconds()
dt.date()
method returns the same naive date for both naive and timezone-aware dt
objects.
The explicit formula for timestamp is used to support Python version before Python 3.3. Otherwise .timestamp()
method could be used in Python 3.3+.
To avoid ambiguity in parsing input dates during DST transitions that are unavoidable for .localize()
method unless you know is_dst
parameter, you could use Unix timestamps stored with the dates:
from datetime import datetime, time, timedelta
import pytz
DAY = timedelta(1)
tz = pytz.timezone('America/Montreal')
local_dt = datetime.fromtimestamp(timestamp_from_the_log, tz)
tomorrow = local_dt.date() + DAY
midnight = tz.localize(datetime.combine(tomorrow, time(0, 0)), is_dst=None)
timestamp = (midnight - datetime(1970, 1, 1, tzinfo=pytz.utc)).total_seconds()
To support other fixed hours (not only midnight):
tomorrow = local_dt.replace(tzinfo=None) + DAY # tomorrow, same time
dt_plus_day = tz.localize(tomorrow, is_dst=None)
timestamp = dt_plus_day.timestamp() # use the explicit formula before Python 3.3
is_dst=None
raises an exception if the result date is ambiguous or non-existent. To avoid exception, you could choose the time that is closest to the previous date from yesterday (same DST state i.e., is_dst=local_dt.dst()
):
from datetime import datetime, time, timedelta
import pytz
DAY = timedelta(1)
tz = pytz.timezone('America/Montreal')
local_dt = datetime.fromtimestamp(timestamp_from_the_log, tz)
tomorrow = local_dt.replace(tzinfo=None) + DAY
dt_plus_day = tz.localize(tomorrow, is_dst=local_dt.dst())
dt_plus_day = tz.normalize(dt_plus_day) # to detect non-existent times
timestamp = (dt_plus_day - datetime(1970, 1, 1, tzinfo=pytz.utc)).total_seconds()
.localize()
respects given time even if it is non-existent, therefore .normalize()
is required to fix the time. You could raise an exception here if normalize()
method changes its input (non-existent time detected in this case) for consistency with other code examples.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With