Example data:
set.seed(1)
df <- data.frame(years=sort(rep(2005:2010, 12)),
months=1:12,
value=c(rnorm(60),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA))
head(df)
years months value
1 2005 1 -0.6264538
2 2005 2 0.1836433
3 2005 3 -0.8356286
4 2005 4 1.5952808
5 2005 5 0.3295078
6 2005 6 -0.8204684
Tell me please, how i can replace NA in df$value to median of others months? "value" must contain the median of value of all previous values for the same month. That is, if current month is May, "value" must contain the median value for all previous values of the month of May.
you want to use the test is.na
function:
df$value[is.na(df$value)] <- median(df$value, na.rm=TRUE)
which says for all the values where df$value
is NA
, replace it with the right hand side. You need the na.rm=TRUE
piece or else the median
function will return NA
to do this month by month, there are many choices, but i think plyr
has the simplest syntax:
library(plyr)
ddply(df,
.(months),
transform,
value=ifelse(is.na(value), median(value, na.rm=TRUE), value))
you can also use data.table
. this is an especially good choice if your data is large:
library(data.table)
DT <- data.table(df)
setkey(DT, months)
DT[,value := ifelse(is.na(value), median(value, na.rm=TRUE), value), by=months]
There are many other ways, but there are two!
Or with ave
df <- data.frame(years=sort(rep(2005:2010, 12)),
months=1:12,
value=c(rnorm(60),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA))
df$value[is.na(df$value)] <- with(df, ave(value, months,
FUN = function(x) median(x, na.rm = TRUE)))[is.na(df$value)]
Since there are so many answers let's see which is fastest.
plyr2 <- function(df){
medDF <- ddply(df,.(months),summarize,median=median(value,na.rm=TRUE))
df$value[is.na(df$value)] <- medDF$median[match(df$months,medDF$months)][is.na(df$value)]
df
}
library(plyr)
library(data.table)
DT <- data.table(df)
setkey(DT, months)
benchmark(ave = df$value[is.na(df$value)] <-
with(df, ave(value, months,
FUN = function(x) median(x, na.rm = TRUE)))[is.na(df$value)],
tapply = df$value[61:72] <-
with(df, tapply(value, months, median, na.rm=TRUE)),
sapply = df[61:72, 3] <- sapply(split(df[1:60, 3], df[1:60, 2]), median),
plyr = ddply(df, .(months), transform,
value=ifelse(is.na(value), median(value, na.rm=TRUE), value)),
plyr2 = plyr2(df),
data.table = DT[,value := ifelse(is.na(value), median(value, na.rm=TRUE), value), by=months],
order = "elapsed")
test replications elapsed relative user.self sys.self user.child sys.child
3 sapply 100 0.209 1.000000 0.196 0.000 0 0
1 ave 100 0.260 1.244019 0.244 0.000 0 0
6 data.table 100 0.271 1.296651 0.264 0.000 0 0
2 tapply 100 0.271 1.296651 0.256 0.000 0 0
5 plyr2 100 1.675 8.014354 1.612 0.004 0 0
4 plyr 100 2.075 9.928230 2.004 0.000 0 0
I would have bet that data.table was the fastest.
[ Matthew Dowle ] The task being timed here takes at most 0.02 seconds (2.075/100). data.table
considers that insignificant. Try setting replications
to 1
and increasing the data size, instead. Or timing the fastest of 3 runs is also a common rule of thumb. More verbose discussion in these links :
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With