I have got huge correlation matrix, but the following is just an example:
set.seed(1234)
corrmat <- matrix(round (rnorm (36, 0, 0.3),2), ncol=6)
rownames (corrmat) <- colnames (corrmat) <- c("A", "b1", "b2", "C", "L", "ctt")
diag(corrmat) <- NA
corrmat[upper.tri (corrmat)] <- NA
A b1 b2 C L ctt
A NA NA NA NA NA NA
b1 0.08 NA NA NA NA NA
b2 0.33 -0.17 NA NA NA NA
C -0.70 -0.27 -0.03 NA NA NA
L 0.13 -0.14 -0.15 -0.13 NA NA
ctt 0.15 -0.30 -0.27 0.14 -0.28 NA
> melt(corrmat)
X1 X2 value
1 A A NA
2 b1 A 0.08
3 b2 A 0.33
4 C A -0.70
5 L A 0.13
6 ctt A 0.15
7 A b1 NA
8 b1 b1 NA
9 b2 b1 -0.17
10 C b1 -0.27
11 L b1 -0.14
12 ctt b1 -0.30
13 A b2 NA
14 b1 b2 NA
15 b2 b2 NA
16 C b2 -0.03
17 L b2 -0.15
18 ctt b2 -0.27
19 A C NA
20 b1 C NA
21 b2 C NA
22 C C NA
23 L C -0.13
24 ctt C 0.14
25 A L NA
26 b1 L NA
27 b2 L NA
28 C L NA
29 L L NA
30 ctt L -0.28
31 A ctt NA
32 b1 ctt NA
33 b2 ctt NA
34 C ctt NA
35 L ctt NA
36 ctt ctt NA
What I am looking is correlation values between adjacent only - means that between A-b1, b1-b2,b2-C, C-L, L-ctt (in the order in column). I need to remove other values and NA. Thus expected will be:
X1 X2 value
2 b1 A 0.08
9 b2 b1 -0.17
16 C b2 -0.03
23 L C -0.13
30 ctt L -0.28
Thus they are in: A-b1-b2-C-L-ctt
order.
Is there a easy way to filter it ?
Here is one way using the often overlooked functions row()
and col()
> corrmat ## my version as there was no set.seed
A b1 b2 C L ctt
A NA NA NA NA NA NA
b1 0.03 NA NA NA NA NA
b2 -0.41 -0.02 NA NA NA NA
C 0.11 0.61 -0.18 NA NA NA
L -0.28 -0.28 0.39 0.01 NA NA
ctt -0.21 -0.41 -0.55 0.34 -0.13 NA
> corrmat[row(corrmat) == col(corrmat) + 1]
[1] 0.03 -0.02 -0.18 0.01 -0.13
Note that we are indexing the matrix corrmat
as a vector here, and the bit in the brackets says return elements where the row index of each element matches the column index of each element plus 1. Using -1
would give you the superdiagonal (i.e. above the diagonal).
To put it all together:
out <- data.frame(X1 = rownames(corrmat)[-1],
X2 = head(colnames(corrmat), -1),
Value = corrmat[row(corrmat) == col(corrmat) + 1])
> out
X1 X2 Value
1 b1 A 0.03
2 b2 b1 -0.02
3 C b2 -0.18
4 L C 0.01
5 ctt L -0.13
Here's one way:
n = rownames(corrmat)
pair.table = data.frame(X1=head(n, -1), X2=tail(n, -1), value=diag(tail(corrmat, -1)))
Result:
> pair.table
X1 X2 value
1 A b1 0.08
2 b1 b2 -0.17
3 b2 C -0.03
4 C L -0.13
5 L ctt -0.28
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With