Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

How to dump confusion matrix using TensorBoard logger in pytorch-lightning?

The official doc only states

>>> from pytorch_lightning.metrics import ConfusionMatrix
>>> target = torch.tensor([1, 1, 0, 0])
>>> preds = torch.tensor([0, 1, 0, 0])
>>> confmat = ConfusionMatrix(num_classes=2)
>>> confmat(preds, target)

This doesn't show how to use the metric with the framework.

My attempt (methods are not complete and only show relevant parts):

def __init__(...):
    self.val_confusion = pl.metrics.classification.ConfusionMatrix(num_classes=self._config.n_clusters)

def validation_step(self, batch, batch_index):
    ...
    log_probs = self.forward(orig_batch)
    loss = self._criterion(log_probs, label_batch)
   
    self.val_confusion.update(log_probs, label_batch)
    self.log('validation_confusion_step', self.val_confusion, on_step=True, on_epoch=False)

def validation_step_end(self, outputs):
    return outputs

def validation_epoch_end(self, outs):
    self.log('validation_confusion_epoch', self.val_confusion.compute())

After the 0th epoch, this gives

    Traceback (most recent call last):
      File "C:\code\EPMD\Kodex\Templates\Testing\venv\lib\site-packages\pytorch_lightning\trainer\trainer.py", line 521, in train
        self.train_loop.run_training_epoch()
      File "C:\code\EPMD\Kodex\Templates\Testing\venv\lib\site-packages\pytorch_lightning\trainer\training_loop.py", line 588, in run_training_epoch
        self.trainer.run_evaluation(test_mode=False)
      File "C:\code\EPMD\Kodex\Templates\Testing\venv\lib\site-packages\pytorch_lightning\trainer\trainer.py", line 613, in run_evaluation
        self.evaluation_loop.log_evaluation_step_metrics(output, batch_idx)
      File "C:\code\EPMD\Kodex\Templates\Testing\venv\lib\site-packages\pytorch_lightning\trainer\evaluation_loop.py", line 346, in log_evaluation_step_metrics
        self.__log_result_step_metrics(step_log_metrics, step_pbar_metrics, batch_idx)
      File "C:\code\EPMD\Kodex\Templates\Testing\venv\lib\site-packages\pytorch_lightning\trainer\evaluation_loop.py", line 350, in __log_result_step_metrics
        cached_batch_pbar_metrics, cached_batch_log_metrics = cached_results.update_logger_connector()
      File "C:\code\EPMD\Kodex\Templates\Testing\venv\lib\site-packages\pytorch_lightning\trainer\connectors\logger_connector\epoch_result_store.py", line 378, in update_logger_connector
        batch_log_metrics = self.get_latest_batch_log_metrics()
      File "C:\code\EPMD\Kodex\Templates\Testing\venv\lib\site-packages\pytorch_lightning\trainer\connectors\logger_connector\epoch_result_store.py", line 418, in get_latest_batch_log_metrics
        batch_log_metrics = self.run_batch_from_func_name("get_batch_log_metrics")
      File "C:\code\EPMD\Kodex\Templates\Testing\venv\lib\site-packages\pytorch_lightning\trainer\connectors\logger_connector\epoch_result_store.py", line 414, in run_batch_from_func_name
        results = [func(include_forked_originals=False) for func in results]
      File "C:\code\EPMD\Kodex\Templates\Testing\venv\lib\site-packages\pytorch_lightning\trainer\connectors\logger_connector\epoch_result_store.py", line 414, in <listcomp>
        results = [func(include_forked_originals=False) for func in results]
      File "C:\code\EPMD\Kodex\Templates\Testing\venv\lib\site-packages\pytorch_lightning\trainer\connectors\logger_connector\epoch_result_store.py", line 122, in get_batch_log_metrics
        return self.run_latest_batch_metrics_with_func_name("get_batch_log_metrics",
*args, **kwargs)
      File "C:\code\EPMD\Kodex\Templates\Testing\venv\lib\site-packages\pytorch_lightning\trainer\connectors\logger_connector\epoch_result_store.py", line 115, in run_latest_batch_metrics_with_func_name
        for dl_idx in range(self.num_dataloaders)
      File "C:\code\EPMD\Kodex\Templates\Testing\venv\lib\site-packages\pytorch_lightning\trainer\connectors\logger_connector\epoch_result_store.py", line 115, in <listcomp>
        for dl_idx in range(self.num_dataloaders)
      File "C:\code\EPMD\Kodex\Templates\Testing\venv\lib\site-packages\pytorch_lightning\trainer\connectors\logger_connector\epoch_result_store.py", line 100, in get_latest_from_func_name
        results.update(func(*args, add_dataloader_idx=add_dataloader_idx, **kwargs))
      File "C:\code\EPMD\Kodex\Templates\Testing\venv\lib\site-packages\pytorch_lightning\core\step_result.py", line 298, in get_batch_log_metrics
        result[dl_key] = self[k]._forward_cache.detach()
    AttributeError: 'NoneType' object has no attribute 'detach'

                                                      

It does pass the sanity validation check before training.

The failure happens on the return in validation_step_end. Makes little sense to me.

The exact same method of using mertics works fine with accuracy.

How to get a correct confusion matrix?

like image 809
Gulzar Avatar asked Dec 29 '20 21:12

Gulzar


2 Answers

You can report the figure using self.logger.experiment.add_figure(*tag*, *figure*).

The variable self.logger.experiment is actually a SummaryWriter (from PyTorch, not Lightning). This class has the method add_figure (documentation).

You can use it as follows: (MNIST example)

    def validation_step(self, batch, batch_idx):
        x, y = batch
        preds = self(x)
        loss = F.nll_loss(preds, y)
        return { 'loss': loss, 'preds': preds, 'target': y}

    def validation_epoch_end(self, outputs):
        preds = torch.cat([tmp['preds'] for tmp in outputs])
        targets = torch.cat([tmp['target'] for tmp in outputs])
        confusion_matrix = pl.metrics.functional.confusion_matrix(preds, targets, num_classes=10)

        df_cm = pd.DataFrame(confusion_matrix.numpy(), index = range(10), columns=range(10))
        plt.figure(figsize = (10,7))
        fig_ = sns.heatmap(df_cm, annot=True, cmap='Spectral').get_figure()
        plt.close(fig_)
        
        self.logger.experiment.add_figure("Confusion matrix", fig_, self.current_epoch)
like image 128
Yorick Avatar answered Nov 17 '22 08:11

Yorick


This is obsolete.

See a much better version


This took a lot of time to find.

This is the most minimal code I could paste that is still readable and reproducible.

I didn't want to put the entire model dataset and parameters here, as they are of no interest to readers of this question and are just noise.


That said, here is the required code for creating a confusion matrix per epoch and displaying in Tensorboard

This is a single frame for example:

enter image description here


import pytorch_lightning as pl
import seaborn as sn
import pandas as pd
import numpy as np
import io
import matplotlib.pyplot as plt
from PIL import Image

def __init__(self, config, trained_vae, latent_dim):
    self.val_confusion = pl.metrics.classification.ConfusionMatrix(num_classes=self._config.n_clusters)
    self.logger: Optional[TensorBoardLogger] = None

def forward(self, x):
    ...
    return log_probs

def validation_step(self, batch, batch_index):
    if self._config.dataset == "mnist":
        orig_batch, label_batch = batch
        orig_batch = orig_batch.reshape(-1, 28 * 28)

    log_probs = self.forward(orig_batch)
    loss = self._criterion(log_probs, label_batch)

    self.val_confusion.update(log_probs, label_batch)
    return {"loss": loss, "labels": label_batch}

def validation_step_end(self, outputs):
    return outputs

def validation_epoch_end(self, outs):
    tb = self.logger.experiment

    # confusion matrix
    conf_mat = self.val_confusion.compute().detach().cpu().numpy().astype(np.int)
    df_cm = pd.DataFrame(
        conf_mat,
        index=np.arange(self._config.n_clusters),
        columns=np.arange(self._config.n_clusters))
    plt.figure()
    sn.set(font_scale=1.2)
    sn.heatmap(df_cm, annot=True, annot_kws={"size": 16}, fmt='d')
    buf = io.BytesIO()
    
    plt.savefig(buf, format='jpeg')
    buf.seek(0)
    im = Image.open(buf)
    im = torchvision.transforms.ToTensor()(im)
    tb.add_image("val_confusion_matrix", im, global_step=self.current_epoch)

and the call to trainer

logger = TensorBoardLogger(save_dir=tb_logs_folder, name='Classifier')
trainer = Trainer(
    deterministic=True,
    max_epochs=10,
    default_root_dir=classifier_checkpoints_path,
    logger=logger,
    gpus=1
)
like image 25
Gulzar Avatar answered Nov 17 '22 08:11

Gulzar