I am trying to identify paragraphs of text in a .pdf
document by first converting it into an image then using OpenCV. But I am getting bounding boxes on lines of text instead of paragraphs. How can I set some threshold or some other limit to get paragraphs instead of lines?
Here is the sample input image:
Here is the output I am getting for the above sample:
I am trying to get a single bounding box on the paragraph in the middle. I am using this code.
import cv2
import numpy as np
large = cv2.imread('sample image.png')
rgb = cv2.pyrDown(large)
small = cv2.cvtColor(rgb, cv2.COLOR_BGR2GRAY)
# kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
kernel = np.ones((5, 5), np.uint8)
grad = cv2.morphologyEx(small, cv2.MORPH_GRADIENT, kernel)
_, bw = cv2.threshold(grad, 0.0, 255.0, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 1))
connected = cv2.morphologyEx(bw, cv2.MORPH_CLOSE, kernel)
# using RETR_EXTERNAL instead of RETR_CCOMP
contours, hierarchy = cv2.findContours(connected.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
#For opencv 3+ comment the previous line and uncomment the following line
#_, contours, hierarchy = cv2.findContours(connected.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
mask = np.zeros(bw.shape, dtype=np.uint8)
for idx in range(len(contours)):
x, y, w, h = cv2.boundingRect(contours[idx])
mask[y:y+h, x:x+w] = 0
cv2.drawContours(mask, contours, idx, (255, 255, 255), -1)
r = float(cv2.countNonZero(mask[y:y+h, x:x+w])) / (w * h)
if r > 0.45 and w > 8 and h > 8:
cv2.rectangle(rgb, (x, y), (x+w-1, y+h-1), (0, 255, 0), 2)
cv2.imshow('rects', rgb)
cv2.waitKey(0)
A paragraph is defined as “a group of sentences or a single sentence that forms a unit” (Lunsford and Connors 116). Length and appearance do not determine whether a section in a paper is a paragraph. For instance, in some styles of writing, particularly journalistic styles, a paragraph can be just one sentence long.
This is a classic situation for dilate. Whenever you want to connect multiple items together, you can dilate them to join adjacent contours into a single contour. Here's a simple approach:
Obtain binary image. Load the image, convert to grayscale, Gaussian blur, then Otsu's threshold to obtain a binary image.
Connect adjacent words together. We create a rectangular kernel and dilate to merge individual contours together.
Detect paragraphs. From here we find contours, obtain the rectangular bounding rectangle coordinates and highlight the rectangular contours.
Otsu's threshold to obtain a binary image
Here's where the magic happens. We can assume that a paragraph is a section of words that are close together, to achieve this we dilate to connect adjacent words
Result
import cv2
import numpy as np
# Load image, grayscale, Gaussian blur, Otsu's threshold
image = cv2.imread('1.png')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (7,7), 0)
thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
# Create rectangular structuring element and dilate
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5,5))
dilate = cv2.dilate(thresh, kernel, iterations=4)
# Find contours and draw rectangle
cnts = cv2.findContours(dilate, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
x,y,w,h = cv2.boundingRect(c)
cv2.rectangle(image, (x, y), (x + w, y + h), (36,255,12), 2)
cv2.imshow('thresh', thresh)
cv2.imshow('dilate', dilate)
cv2.imshow('image', image)
cv2.waitKey()
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With