The code below works.
names = years 1960 - 2016
values = GDP of the US for each year
The code produces two charts, but the y-axis label runs from 5000 to 175000. I want to 1) format the label with a "," for a thousands separator, so as an example, 5,000 or 17,500, and,
2) I want to increase the font size of the labels - so increase the font of, for example, 5000.
Not finding a workable/understandable example on line. Help appreciated.
%matplotlib inline
import matplotlib.pyplot as plt
plt.style.use('seaborn-white')
import numpy as np
from numpy import array
# Plot GDP/Year
names = usa.loc[: , "Year"]
values = usa.loc[: , "GDP Billions"]
plt.figure(1, figsize=(15, 6))
plt.suptitle('GDP Growth', fontsize=20)
plt.subplot(121)
plt.plot(names, values)
plt.xticks(np.arange(0, 57, step=5.0))
plt.ylabel('GDP', fontsize=16)
plt.title('United States',fontsize=16)
plt.subplot(122)
plt.plot(names, values)
plt.xticks(np.arange(0, 57, step=5.0))
plt.xlabel('Year', fontsize=16)
plt.title('United States',fontsize=16)
#plt.ticklabel_format(axis='y', style='sci', scilimits=(0, 4))
#print(plt.xticks())
plt.show()
1) format the label with a "," for a thousands separator, so as an example, 5,000 or 17,500, and (as in How do I format axis number format to thousands with a comma in matplotlib?)
fig, (ax1, ax2) = plt.subplots(1, 2)
ax1.get_yaxis().set_major_formatter(
matplotlib.ticker.FuncFormatter(lambda x, p: format(int(x), ',')))
2) I want to increase the font size of the labels - so increase the font of, for example, 5000:
plt.rc('ytick', labelsize=5000)
Here's how you change your code to incorporate these solutions (as requested in the comment):
%matplotlib inline
import matplotlib.pyplot as plt
plt.style.use('seaborn-white')
import numpy as np
from numpy import array
plt.rc('ytick', labelsize=12)
# Plot GDP/Year
names = usa.loc[: , "Year"]
values = usa.loc[: , "GDP Billions"]
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 6))
fig.suptitle('GDP Growth', fontsize=20)
ax1.plot(names, values)
ax1.set_xticklabels(np.arange(0, 57, step=5.0))
ax1.set_ylabel('GDP', fontsize=16)
ax1.set_title('United States',fontsize=16)
ax1.get_yaxis().set_major_formatter(
matplotlib.ticker.FuncFormatter(lambda x, p: format(int(x), ',')))
ax2.plot(names, values)
ax2.set_xticklabels(np.arange(0, 57, step=5.0))
ax2.set_ylabel('Year', fontsize=16)
ax2.set_title('United States',fontsize=16)
ax2.get_yaxis().set_major_formatter(
matplotlib.ticker.FuncFormatter(lambda x, p: format(int(x), ',')))
#plt.ticklabel_format(axis='y', style='sci', scilimits=(0, 4))
#print(plt.xticks())
plt.show()
And here's what the plots look like for a dummy data I created:
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With