I wanted to make a generic function that folds over a wide range of inputs (see Making a single function work on lists, ByteStrings and Texts (and perhaps other similar representations)). As one answer suggested, the ListLike is just for that. Its FoldableLL class defines an abstraction for anything that is foldable. However, I need a monadic fold. So I need to define foldM
in terms of foldl
/foldr
.
So far, my attempts failed. I tried to define
foldM'' :: (Monad m, LL.FoldableLL full a) => (b -> a -> m b) -> b -> full -> m b
foldM'' f z = LL.foldl (\acc x -> acc >>= (`f` x)) (return z)
but it runs out of memory on large inputs - it builds a large unevaluated tree of computations. For example, if I pass a large text file to
main :: IO ()
main = getContents >>= foldM'' idx 0 >> return ()
where
-- print the current index if 'a' is found
idx !i 'a' = print i >> return (i + 1)
idx !i _ = return (i + 1)
it eats up all memory and fails.
I have a feeling that the problem is that the monadic computations are composed in a wrong order - like ((... >>= ...) >>= ...)
instead of (... >>= (... >>= ...))
but so far I didn't find out how to fix it.
Workaround: Since ListLike
exposes mapM_
, I constructed foldM
on ListLike
s by wrapping the accumulator into the state monad:
modifyT :: (Monad m) => (s -> m s) -> StateT s m ()
modifyT f = get >>= \x -> lift (f x) >>= put
foldLLM :: (LL.ListLike full a, Monad m) => (b -> a -> m b) -> b -> full -> m b
foldLLM f z c = execStateT (LL.mapM_ (\x -> modifyT (\b -> f b x)) c) z
While this works fine on large data sets, it's not very nice. And it doesn't answer the original question, if it's possible to define it on data that are just FoldableLL
(without mapM_
).
So the goal is to reimplement foldM
using either foldr
or foldl
. Which one should it be? We want the input to be processed lazily and allow for infinte lists, this rules out foldl
. So foldr
is it going to be.
So here is the definition of foldM
from the standard library.
foldM :: (Monad m) => (a -> b -> m a) -> a -> [b] -> m a
foldM _ a [] = return a
foldM f a (x:xs) = f a x >>= \fax -> foldM f fax xs
The thing to remember about foldr
is that its arguments simply replace []
and :
in the list (ListLike
abstracts over that, but it still serves as a guiding principle).
So what should []
be replaced with? Clearly with return a
. But where does a
come from? It won’t be the initial a
that is passed to foldM
– if the list is not empty, when foldr
reaches the end of the list, the accumulator should have changed. So we replace []
by a function that takes an accumulator and returns it in the underlying monad: \a -> return a
(or simply return
). This also gives the type of the thing that foldr
will calculate: a -> m a
.
And what should we replace :
with? It needs to be a function b -> (a -> m a) -> (a -> m a)
, taking the first element of the list, the processed tail (lazily, of course) and the current accumulator. We can figure it out by taking hints from the code above: It is going to be \x rest a -> f a x >>= rest
. So our implementation of foldM
will be (adjusting the type variables to match them in the code above):
foldM'' :: (Monad m) => (a -> b -> m a) -> a -> [b] -> m a
foldM'' f z list = foldr (\x rest a -> f a x >>= rest) return list z
And indeed, now your program can consume arbitrary large input, spitting out the results as you go.
We can even prove, inductively, that the definitions are semantically equal (although we should probably do coinduction or take-induction to cater for infinite lists).
We want to show
foldM f a xs = foldM'' f a xs
for all xs :: [b]
. For xs = []
we have
foldM f a []
≡ return a -- definition of foldM
≡ foldr (\x rest a -> f a x >>= rest) return [] a -- definition of foldr
≡ foldM'' f a [] -- definition of foldM''
and, assuming we have it for xs
, we show it for x:xs
:
foldM f a (x:xs)
≡ f a x >>= \fax -> foldM f fax xs --definition of foldM
≡ f a x >>= \fax -> foldM'' f fax xs -- induction hypothesis
≡ f a x >>= \fax -> foldr (\x rest a -> f a x >>= rest) return xs fax -- definition of foldM''
≡ f a x >>= foldr (\x rest a -> f a x >>= rest) return xs -- eta expansion
≡ foldr (\x rest a -> f a x >>= rest) return (x:xs) -- definition of foldr
≡ foldM'' f a (x:xs) -- definition of foldM''
Of course this equational reasoning does not tell you anything about the performance properties you were interested in.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With