I have one csv file in which I have 2 closing prices of stock(on daily basis)
Dates Bajaj_close Hero_close 3/14/2013 1854.8 1669.1 3/15/2013 1850.3 1684.45 3/18/2013 1812.1 1690.5 3/19/2013 1835.9 1645.6 3/20/2013 1840 1651.15 3/21/2013 1755.3 1623.3 3/22/2013 1820.65 1659.6 3/25/2013 1802.5 1617.7 3/26/2013 1801.25 1571.85 3/28/2013 1799.55 1542
I want to convert above data into time series format. (start date is 3/14/2013
and end date is 3/13/2015
) I have tried this but its giving me some weird output
values <- bajaj_hero[, -1] (excluded first column i.e date in real dataset) bajaj_hero_timeseries <- ts(values,start=c(2013,1),end=c(2015,3),frequency=365)
Output is:
Bajaj_close Hero_close 2013.000 1854.80 1669.10 2013.003 1850.30 1684.45 2013.005 1812.10 1690.50 2013.008 1835.90 1645.60 2013.011 1840.00 1651.15 2013.014 1755.30 1623.30 2013.016 1820.65 1659.60 2013.019 1802.50 1617.70 2013.022 1801.25 1571.85
R has multiple ways of represeting time series. Since you're working with daily prices of stocks, you may wish to consider that financial markets are closed on weekends and business holidays so that trading days and calendar days are not the same. However, you may need to work with your times series in terms of both trading days and calendar days. For example, daily returns are calculated from sequential daily closing prices regardless of whether a weekend intervenes. But you may also want to do calendar-based reporting such as weekly price summaries. For these reasons the xts package, an extension of zoo, is commonly used with financial data in R. An example of how it could be used with your data follows.
Assuming the data shown in your example is in the dataframe df
library(xts) stocks <- xts(df[,-1], order.by=as.Date(df[,1], "%m/%d/%Y")) # # daily returns # returns <- diff(stocks, arithmetic=FALSE ) - 1 # # weekly open, high, low, close reports # to.weekly(stocks$Hero_close, name="Hero")
which gives the output
Hero.Open Hero.High Hero.Low Hero.Close 2013-03-15 1669.1 1684.45 1669.1 1684.45 2013-03-22 1690.5 1690.50 1623.3 1659.60 2013-03-28 1617.7 1617.70 1542.0 1542.00
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With