How can I select rows from a DataFrame
based on values in some column in Pandas?
In SQL, I would use:
SELECT * FROM table WHERE column_name = some_value
I tried to look at Pandas' documentation, but I did not immediately find the answer.
To select rows whose column value equals a scalar, some_value
, use ==
:
df.loc[df['column_name'] == some_value]
To select rows whose column value is in an iterable, some_values
, use isin
:
df.loc[df['column_name'].isin(some_values)]
Combine multiple conditions with &
:
df.loc[(df['column_name'] >= A) & (df['column_name'] <= B)]
Note the parentheses. Due to Python's operator precedence rules, &
binds more tightly than <=
and >=
. Thus, the parentheses in the last example are necessary. Without the parentheses
df['column_name'] >= A & df['column_name'] <= B
is parsed as
df['column_name'] >= (A & df['column_name']) <= B
which results in a Truth value of a Series is ambiguous error.
To select rows whose column value does not equal some_value
, use !=
:
df.loc[df['column_name'] != some_value]
isin
returns a boolean Series, so to select rows whose value is not in some_values
, negate the boolean Series using ~
:
df.loc[~df['column_name'].isin(some_values)]
For example,
import pandas as pd import numpy as np df = pd.DataFrame({'A': 'foo bar foo bar foo bar foo foo'.split(), 'B': 'one one two three two two one three'.split(), 'C': np.arange(8), 'D': np.arange(8) * 2}) print(df) # A B C D # 0 foo one 0 0 # 1 bar one 1 2 # 2 foo two 2 4 # 3 bar three 3 6 # 4 foo two 4 8 # 5 bar two 5 10 # 6 foo one 6 12 # 7 foo three 7 14 print(df.loc[df['A'] == 'foo'])
yields
A B C D 0 foo one 0 0 2 foo two 2 4 4 foo two 4 8 6 foo one 6 12 7 foo three 7 14
If you have multiple values you want to include, put them in a list (or more generally, any iterable) and use isin
:
print(df.loc[df['B'].isin(['one','three'])])
yields
A B C D 0 foo one 0 0 1 bar one 1 2 3 bar three 3 6 6 foo one 6 12 7 foo three 7 14
Note, however, that if you wish to do this many times, it is more efficient to make an index first, and then use df.loc
:
df = df.set_index(['B']) print(df.loc['one'])
yields
A C D B one foo 0 0 one bar 1 2 one foo 6 12
or, to include multiple values from the index use df.index.isin
:
df.loc[df.index.isin(['one','two'])]
yields
A C D B one foo 0 0 one bar 1 2 two foo 2 4 two foo 4 8 two bar 5 10 one foo 6 12
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With