I'm trying to fit the distribution of some experimental values with a custom probability density function. Obviously, the integral of the resulting function should always be equal to 1, but the results of simple scipy.optimize.curve_fit(function, dataBincenters, dataCounts) never satisfy this condition. What is the best way to solve this problem?
The 'p0' parameter is an N length initial guess for the parameters. It is an optional parameter, and hence, if it is not provided, then the initial value will be 1. The curve_fit() function will return the two values; popt and pcov.
1. What does popt and pcov mean? popt- An array of optimal values for the parameters which minimizes the sum of squares of residuals. pcov-2d array which contains the estimated covariance of popt. The diagonals provide the variance of the parameter estimate.
You can define your own residuals function, including a penalization parameter, like detailed in the code below, where it is known beforehand that the integral along the interval must be 2.
. If you test without the penalization you will see that what your are getting is the conventional curve_fit
:
import matplotlib.pyplot as plt import scipy from scipy.optimize import curve_fit, minimize, leastsq from scipy.integrate import quad from scipy import pi, sin x = scipy.linspace(0, pi, 100) y = scipy.sin(x) + (0. + scipy.rand(len(x))*0.4) def func1(x, a0, a1, a2, a3): return a0 + a1*x + a2*x**2 + a3*x**3 # here you include the penalization factor def residuals(p,x,y): integral = quad( func1, 0, pi, args=(p[0],p[1],p[2],p[3]))[0] penalization = abs(2.-integral)*10000 return y - func1(x, p[0],p[1],p[2],p[3]) - penalization popt1, pcov1 = curve_fit( func1, x, y ) popt2, pcov2 = leastsq(func=residuals, x0=(1.,1.,1.,1.), args=(x,y)) y_fit1 = func1(x, *popt1) y_fit2 = func1(x, *popt2) plt.scatter(x,y, marker='.') plt.plot(x,y_fit1, color='g', label='curve_fit') plt.plot(x,y_fit2, color='y', label='constrained') plt.legend(); plt.xlim(-0.1,3.5); plt.ylim(0,1.4) print 'Exact integral:',quad(sin ,0,pi)[0] print 'Approx integral1:',quad(func1,0,pi,args=(popt1[0],popt1[1], popt1[2],popt1[3]))[0] print 'Approx integral2:',quad(func1,0,pi,args=(popt2[0],popt2[1], popt2[2],popt2[3]))[0] plt.show() #Exact integral: 2.0 #Approx integral1: 2.60068579748 #Approx integral2: 2.00001911981
Other related questions:
Here is an almost-identical snippet which makes only use of curve_fit
.
import matplotlib.pyplot as plt
import numpy as np
import scipy.optimize as opt
import scipy.integrate as integr
x = np.linspace(0, np.pi, 100)
y = np.sin(x) + (0. + np.random.rand(len(x))*0.4)
def Func(x, a0, a1, a2, a3):
return a0 + a1*x + a2*x**2 + a3*x**3
# modified function definition with Penalization
def FuncPen(x, a0, a1, a2, a3):
integral = integr.quad( Func, 0, np.pi, args=(a0,a1,a2,a3))[0]
penalization = abs(2.-integral)*10000
return a0 + a1*x + a2*x**2 + a3*x**3 + penalization
popt1, pcov1 = opt.curve_fit( Func, x, y )
popt2, pcov2 = opt.curve_fit( FuncPen, x, y )
y_fit1 = Func(x, *popt1)
y_fit2 = Func(x, *popt2)
plt.scatter(x,y, marker='.')
plt.plot(x,y_fit2, color='y', label='constrained')
plt.plot(x,y_fit1, color='g', label='curve_fit')
plt.legend(); plt.xlim(-0.1,3.5); plt.ylim(0,1.4)
print 'Exact integral:',integr.quad(np.sin ,0,np.pi)[0]
print 'Approx integral1:',integr.quad(Func,0,np.pi,args=(popt1[0],popt1[1],
popt1[2],popt1[3]))[0]
print 'Approx integral2:',integr.quad(Func,0,np.pi,args=(popt2[0],popt2[1],
popt2[2],popt2[3]))[0]
plt.show()
#Exact integral: 2.0
#Approx integral1: 2.66485028754
#Approx integral2: 2.00002116217
Following the example above here is more general way to add any constraints:
from scipy.optimize import minimize
from scipy.integrate import quad
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0, np.pi, 100)
y = np.sin(x) + (0. + np.random.rand(len(x))*0.4)
def func_to_fit(x, params):
return params[0] + params[1] * x + params[2] * x ** 2 + params[3] * x ** 3
def constr_fun(params):
intgrl, _ = quad(func_to_fit, 0, np.pi, args=(params,))
return intgrl - 2
def func_to_minimise(params, x, y):
y_pred = func_to_fit(x, params)
return np.sum((y_pred - y) ** 2)
# Do the parameter fitting
#without constraints
res1 = minimize(func_to_minimise, x0=np.random.rand(4), args=(x, y))
params1 = res1.x
# with constraints
cons = {'type': 'eq', 'fun': constr_fun}
res2 = minimize(func_to_minimise, x0=np.random.rand(4), args=(x, y), constraints=cons)
params2 = res2.x
y_fit1 = func_to_fit(x, params1)
y_fit2 = func_to_fit(x, params2)
plt.scatter(x,y, marker='.')
plt.plot(x, y_fit2, color='y', label='constrained')
plt.plot(x, y_fit1, color='g', label='curve_fit')
plt.legend(); plt.xlim(-0.1,3.5); plt.ylim(0,1.4)
plt.show()
print(f"Constrant violation: {constr_fun(params1)}")
Constraint violation: -2.9179325622408214e-10
If you are able normalise your probability fitting function in advance then you can use this information to constrain your fit. A very simple example of this would be fitting a Gaussian to data. If one were to fit the following three-parameter (A, mu, sigma) Gaussian then it would be unnormalised in general:
however, if one instead enforces the normalisation condition on A:
then the Gaussian is only two parameter and is automatically normalised.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With