I'm trying to reorder/swaplevel/pivot/something columns in a pandas dataframe. The columns are a MultiIndex, but I can't find the sauce to do what I want.
The fastest varying column in my multiIndex is month, but I would like it to be the slowest varying column.
I've got a nbviewer notebook if you would like to try it out yourself: http://nbviewer.ipython.org/gist/flamingbear/4cfac24c80fe34a67474
What I have:
+-------------------------------------------------------------------+
|+-----+------+------+-----+------+-----+-----+------+-----+-----+ |
|| |weight |extent |rank ||
|+-----+------+------+-----+------+-----+-----+------+-----+-----+ |
||month|'1Jan'|'Feb' |'Mar'|'1Jan'|'Feb'|'Mar'|'1Jan'|'Feb'|'Mar'| |
|+-----+------+------+-----+------+-----+-----+------+-----+-----+ |
||year | | | | | | | | | | |
|+-----+------+------+-----+------+-----+-----+------+-----+-----+ |
||2000 |45.1 |46.1 |25.1 |13.442|14.94|15.02|13 |17 |14 | |
|+-----+------+------+-----+------+-----+-----+------+-----+-----+ |
||2001 |85.0 |16.0 |49.0 |13.380|14.81|15.14|12 |15 |17 | |
|+-----+------+------+-----+------+-----+-----+------+-----+-----+ |
||2002 |90.0 |33.0 |82.0 |13.590|15.13|14.88|15 |22 |10 | |
|+-----+------+------+-----+------+-----+-----+------+-----+-----+ |
||2003 |47.0 |34.0 |78.0 |13.640|14.83|15.27|17 |16 |22 | |
|+-----+------+------+-----+------+-----+-----+------+-----+-----+ |
+-------------------------------------------------------------------+
What I want
+------------------------------------------------------------------+
|+-----+------+------+----+------+------+-----+------+------+----+ |
||month|1Jan |Feb |Mar ||
|+-----+------+------+----+------+------+-----+------+------+----+ |
|| |weight|extent|rank|weight|extent|rank |weight|extent|rank| |
|+-----+------+------+----+------+------+-----+------+------+----+ |
||year | | | | | | | | | | |
|+-----+------+------+----+------+------+-----+------+------+----+ |
||2000 |45.1 |13.442|13 |46.1 |14.94 |17 | 25.1 |15.02 |14 | |
|+-----+------+------+----+------+------+-----+------+------+----+ |
||2001 |85.0 |13.380|12 |16.0 |14.81 |15 | 49.0 |15.14 |17 | |
|+-----+------+------+----+------+------+-----+------+------+----+ |
||2002 |90.0 |13.590|15 |33.0 |15.13 |22 | 82.0 |14.88 |10 | |
|+-----+------+------+----+------+------+-----+------+------+----+ |
||2003 |47.0 |13.640|17 |34.0 |14.83 |16 | 78.0 |15.27 |22 | |
|+-----+------+------+-----------+------+-----+------+------+----+ |
+------------------------------------------------------------------+
Any help would be appreciated. I can work with my original DataFrame, but writing to a CSV with the desired ordering would be fantastic.
Thanks in advance, Matt
To rearrange levels in MultiIndex, use the MultiIndex. reorder_levels() method in Pandas. Set the order of levels using the order parameter.
Reorder Columns using Pandas . Another way to reorder columns is to use the Pandas . reindex() method. This allows you to pass in the columns= parameter to pass in the order of columns that you want to use.
Your columns are a MultiIndex. You need to reassign the DataFrame's columns with a new MultiIndex created from swapping levels of the existing one:
df.columns = df.columns.swaplevel(0, 1)
df.sort_index(axis=1, level=0, inplace=True)
>>> df
month '1Jan' 'Feb' 'Mar'
weight extent rank weight extent rank weight extent rank
year
2000 45.1 13.442 13 46.1 14.94 17 25.1 15.02 14
2001 85.0 13.380 12 16.0 14.81 15 49.0 15.14 17
2002 90.0 13.590 15 33.0 15.13 22 82.0 14.88 10
2003 47.0 13.640 17 34.0 14.83 16 78.0 15.27 22
You can then export to csv:
df.to_csv(filename)
Since levels indices are no more mandatory you can have even more simple way to achieve the level swapping of multi-index dataframe:
df = df.swaplevel(axis='columns')
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With