Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

How can you parse a string that is json from an existing temp table using PySpark?

I have an existing Spark dataframe that has columns as such:

--------------------
pid | response
--------------------
 12 | {"status":"200"}

response is a string column. Is there a way to cast it into JSON and extract specific fields? Can lateral view be used as it is in Hive? I looked up some examples on line that used explode and later view but it doesn't seem to work with Spark 2.1.1

like image 398
codeBarer Avatar asked Sep 06 '17 20:09

codeBarer


1 Answers

From pyspark.sql.functions , you can use any of from_json,get_json_object,json_tuple to extract fields from json string as below,

>>from pyspark.sql.functions import json_tuple,from_json,get_json_object
>>> from pyspark.sql import SparkSession
>>> spark = SparkSession.builder.getOrCreate()
>>> l = [(12, '{"status":"200"}'),(13,'{"status":"200","somecol":"300"}')]
>>> df = spark.createDataFrame(l,['pid','response'])
>>> df.show()
+---+--------------------+
|pid|            response|
+---+--------------------+
| 12|    {"status":"200"}|
| 13|{"status":"200",...|
+---+--------------------+

>>> df.printSchema()
root
 |-- pid: long (nullable = true)
 |-- response: string (nullable = true)

Using json_tuple :
>>> df.select('pid',json_tuple(df.response,'status','somecol')).show()
+---+---+----+
|pid| c0|  c1|
+---+---+----+
| 12|200|null|
| 13|200| 300|
+---+---+----+

Using from_json:
>>> schema = StructType([StructField("status", StringType()),StructField("somecol", StringType())])
>>> df.select('pid',from_json(df.response, schema).alias("json")).show()
+---+----------+
|pid|      json|
+---+----------+
| 12|[200,null]|
| 13| [200,300]|
+---+----------+

Using get_json_object:
>>> df.select('pid',get_json_object(df.response,'$.status').alias('status'),get_json_object(df.response,'$.somecol').alias('somecol')).show()
+---+------+-------+
|pid|status|somecol|
+---+------+-------+
| 12|   200|   null|
| 13|   200|    300|
+---+------+-------+
like image 61
Suresh Avatar answered Oct 09 '22 10:10

Suresh