A unit testing framework for Arduino platforms inspired by ArduinoUnit and Google Test. The unit tests can run on the embedded controller. They can also run on Linux, MacOS, or FreeBSD environments using EpoxyDuino, which allows AUnit to be used in a Continuous Integration environment like GitHub Workflows.
There's a lot of discussion about what unit test means and I'm not really trying to make an argument about that here. This post is not telling you to avoid all practical testing on your ultimate target hardware. I am trying to make a point about optimizing your development feedback cycle by eliminating your target hardware from your most mundane and frequent tests. The units under test are assumed to be much smaller than the whole project.
The purpose of unit testing is to test the quality of your own code. Unit tests should generally never test the functionality of factors outside of your control.
Think about it this way: Even if you were to test functionality of the Arduino library, the microcontroller hardware, or an emulator, it is absolutely impossible for such test results to tell you anything about the quality of your own work. Hence, it is far more valuable and efficient to write unit tests that do not run on the target device (or emulator).
Frequent testing on your target hardware has a painfully slow cycle:
Step 3 is particularly nasty if you expect to get diagnostic messages via serial port but your project itself needs to use your Arduino's only hardware serial port. If you were thinking that the SoftwareSerial library might help, you should know that doing so is likely to disrupt any functionality that requires accurate timing like generating other signals at the same time. This problem has happened to me.
Again, if you were to test your sketch using an emulator and your time-critical routines ran perfectly until you uploaded to the actual Arduino, then the only lesson you're going to learn is that the emulator is flawed--and knowing this still reveals nothing about the quality of your own work.
You're probably using a computer to work on your Arduino project. That computer is orders of magnitudes faster than the microcontroller. Write the tests to build and run on your computer.
Remember, the behavior of the Arduino library and microcontroller should be assumed to be either correct or at least consistently incorrect.
When your tests produce output contrary to your expectations, then you likely have a flaw in your code that was tested. If your test output matches your expectations, but the program does not behave correctly when you upload it to the Arduino, then you know that your tests were based on incorrect assumptions and you likely have a flawed test. In either case, you will have been given real insights on what your next code changes should be. The quality of your feedback is improved from "something is broken" to "this specific code is broken".
The first thing you need to do is identify your testing goals. Think about what parts of your own code you want to test and then make sure to construct your program in such a way that you can isolate discrete parts for testing.
If the parts that you want to test call any Arduino functions, you will need to provide mock-up replacements in your test program. This is much less work than it seems. Your mock-ups don't have to actually do anything but providing predictable input and output for your tests.
Any of your own code that you intend to test needs to exist in source files other than the .pde sketch. Don't worry, your sketch will still compile even with some source code outside of the sketch. When you really get down to it, little more than your program's normal entry point should be defined in the sketch file.
All that remains is to write the actual tests and then compile it using your favorite C++ compiler! This is probably best illustrated with a real world example.
One of my pet projects found here has some simple tests that run on the PC. For this answer submission, I'll just go over how I mocked-up some of Arduino library functions and the tests I wrote to test those mock-ups. This is not contrary to what I said before about not testing other people's code because I was the one who wrote the mock-ups. I wanted to be very certain that my mock-ups were correct.
Source of mock_arduino.cpp, which contains code that duplicates some support functionality provided by the Arduino library:
#include <sys/timeb.h>
#include "mock_arduino.h"
timeb t_start;
unsigned long millis() {
timeb t_now;
ftime(&t_now);
return (t_now.time - t_start.time) * 1000 + (t_now.millitm - t_start.millitm);
}
void delay( unsigned long ms ) {
unsigned long start = millis();
while(millis() - start < ms){}
}
void initialize_mock_arduino() {
ftime(&t_start);
}
I use the following mock-up to produce readable output when my code writes binary data to the hardware serial device.
fake_serial.h
#include <iostream>
class FakeSerial {
public:
void begin(unsigned long);
void end();
size_t write(const unsigned char*, size_t);
};
extern FakeSerial Serial;
fake_serial.cpp
#include <cstring>
#include <iostream>
#include <iomanip>
#include "fake_serial.h"
void FakeSerial::begin(unsigned long speed) {
return;
}
void FakeSerial::end() {
return;
}
size_t FakeSerial::write( const unsigned char buf[], size_t size ) {
using namespace std;
ios_base::fmtflags oldFlags = cout.flags();
streamsize oldPrec = cout.precision();
char oldFill = cout.fill();
cout << "Serial::write: ";
cout << internal << setfill('0');
for( unsigned int i = 0; i < size; i++ ){
cout << setw(2) << hex << (unsigned int)buf[i] << " ";
}
cout << endl;
cout.flags(oldFlags);
cout.precision(oldPrec);
cout.fill(oldFill);
return size;
}
FakeSerial Serial;
and finally, the actual test program:
#include "mock_arduino.h"
using namespace std;
void millis_test() {
unsigned long start = millis();
cout << "millis() test start: " << start << endl;
while( millis() - start < 10000 ) {
cout << millis() << endl;
sleep(1);
}
unsigned long end = millis();
cout << "End of test - duration: " << end - start << "ms" << endl;
}
void delay_test() {
unsigned long start = millis();
cout << "delay() test start: " << start << endl;
while( millis() - start < 10000 ) {
cout << millis() << endl;
delay(250);
}
unsigned long end = millis();
cout << "End of test - duration: " << end - start << "ms" << endl;
}
void run_tests() {
millis_test();
delay_test();
}
int main(int argc, char **argv){
initialize_mock_arduino();
run_tests();
}
This post is long enough, so please refer to my project on GitHub to see some more test cases in action. I keep my works-in-progress in branches other than master, so check those branches for extra tests, too.
I chose to write my own lightweight test routines, but more robust unit-test frameworks like CppUnit are also available.
In the absence of any pre-existing unit test frameworks for Arduino, I have created ArduinoUnit. Here's a simple Arduino sketch demonstrating its use:
#include <ArduinoUnit.h>
// Create test suite
TestSuite suite;
void setup() {
Serial.begin(9600);
}
// Create a test called 'addition' in the test suite
test(addition) {
assertEquals(3, 1 + 2);
}
void loop() {
// Run test suite, printing results to the serial port
suite.run();
}
I have considerable success unit testing my PIC code by abstracting out the hardware access and mocking it in my tests.
For example, I abstract PORTA with
#define SetPortA(v) {PORTA = v;}
Then SetPortA can easily be mocked, without adding overhead code in the PIC version.
Once the hardware abstraction has been tested a while I soon find that generally code goes from the test rig to the PIC and works first time.
Update:
I use a #include seam for the unit code, #including the unit code in a C++ file for the test rig, and a C file for the target code.
As an example I want to multiplex four 7 segment displays, one port driving the segments and a second selecting the display. The display code interfaces with the displays via SetSegmentData(char)
and SetDisplay(char)
. I can mock these in my C++ test rig and check that I get the data I expect. For the target I use #define
so that I get a direct assignment without the overhead of a function call
#define SetSegmentData(x) {PORTA = x;}
It seems that emulino would do the job perfectly.
Emulino is an emulator for the Arduino platform by Greg Hewgill. (Source)
GitHub repository
simavr is an AVR simulator using avr-gcc.
It already supports a few ATTiny and ATMega microcontrollers, and - according to the author - it's easy to add some more.
In the examples lies simduino, an Arduino emulator. It supports running the Arduino bootloader and can be programmed with avrdude through Socat (a modified Netcat).
You can unit test in Python with my project, PySimAVR. Arscons is used for building and simavr for simulation.
Example:
from pysimavr.sim import ArduinoSim
def test_atmega88():
mcu = 'atmega88'
snippet = 'Serial.print("hello");'
output = ArduinoSim(snippet=snippet, mcu=mcu, timespan=0.01).get_serial()
assert output == 'hello'
Start test:
$ nosetests pysimavr/examples/test_example.py
pysimavr.examples.test_example.test_atmega88 ... ok
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With