thanks for looking my question.
For example.
The final output is the sum of two matrix A and B,like this:
output = keras.layers.add([A, B])
Now,I want to build a new parameter x to change the output.
I want to make newoutput = Ax+B(1-x)
and x is a trainable parameter in my network.
what should I do? please help me ~ thanks very much!
edit(part of code ):
conv1 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(input)
drop1 = Dropout(0.5)(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(drop1)
conv2 = Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool1)
conv2 = Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv2)
drop2 = Dropout(0.5)(conv2)
up1 = Conv2D(512, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(drop2))
#the line I want to change:
merge = add([drop2,up1])
#this layer is simply add drop2 and up1 layer.now I want to add a trainable parameter x to adjust the weight of thoese two layers.
I tried to use the codes,but still occured some questions:
1.how can I use my own layer?
merge = Mylayer()(drop2,up1)
or otherway?
2.what is the meaning of out_dim? those parameters are all 3-dim matrix.what is the mening of out_dim?
thank you...T.T
edit2(solved)
from keras import backend as K
from keras.engine.topology import Layer
import numpy as np
from keras.layers import add
class MyLayer(Layer):
def __init__(self, **kwargs):
super(MyLayer, self).__init__(**kwargs)
def build(self, input_shape):
self._x = K.variable(0.5)
self.trainable_weights = [self._x]
super(MyLayer, self).build(input_shape) # Be sure to call this at the end
def call(self, x):
A, B = x
result = add([self._x*A ,(1-self._x)*B])
return result
def compute_output_shape(self, input_shape):
return input_shape[0]
You have to create a custom class which inherits from Layer
and create the trainable parameter using self.add_weight(...)
. You can find an example of this here and there.
For your example, the layer would somehow look like this:
from keras import backend as K
from keras.engine.topology import Layer
import numpy as np
class MyLayer(Layer):
def __init__(self, output_dim, **kwargs):
self.output_dim = output_dim
super(MyLayer, self).__init__(**kwargs)
def build(self, input_shape):
# Create a trainable weight variable for this layer.
self._A = self.add_weight(name='A',
shape=(input_shape[1], self.output_dim),
initializer='uniform',
trainable=True)
self._B = self.add_weight(name='B',
shape=(input_shape[1], self.output_dim),
initializer='uniform',
trainable=True)
super(MyLayer, self).build(input_shape) # Be sure to call this at the end
def call(self, x):
return K.dot(x, self._A) + K.dot(1-x, self._B)
def compute_output_shape(self, input_shape):
return (input_shape[0], self.output_dim)
Edit: Just based on the names I (wrongly) assumed that x
is the layers input and you want to optimize A
and B
. But, as you stated, you want to optimize x
. For this, you can do something like this:
from keras import backend as K
from keras.engine.topology import Layer
import numpy as np
class MyLayer(Layer):
def __init__(self, **kwargs):
super(MyLayer, self).__init__(**kwargs)
def build(self, input_shape):
# Create a trainable weight variable for this layer.
self._x = self.add_weight(name='x',
shape=(1,),
initializer='uniform',
trainable=True)
super(MyLayer, self).build(input_shape) # Be sure to call this at the end
def call(self, x):
A, B = x
return K.dot(self._x, A) + K.dot(1-self._x, B)
def compute_output_shape(self, input_shape):
return input_shape[0]
Edit2: You can call this layer using
merge = Mylayer()([drop2,up1])
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With