The data are coordinates of objects in the sky, for example as follows:
import pylab as plt
import numpy as np
l = np.random.uniform(-180, 180, 2000)
b = np.random.uniform(-90, 90, 2000)
I want to do a 2D histogram in order to plot a map of the density of some point with (l, b)
coordinates in the sky, using HEALPix pixellization on Mollweide projection. How can I do this using healpy ?
The tutorial:
http://healpy.readthedocs.io/en/v1.9.0/tutorial.html
says how to plot a 1D array, or a fits file, but I don't find how to do a 2d histogram using this pixellization.
I also found this function, but it is not working , so I am stuck.
hp.projaxes.MollweideAxes.hist2d(l, b, bins=10)
I can do a plot of these points in Mollweide projection this way :
l_axis_name ='Latitude l (deg)'
b_axis_name = 'Longitude b (deg)'
fig = plt.figure(figsize=(12,9))
ax = fig.add_subplot(111, projection="mollweide")
ax.grid(True)
ax.scatter(np.array(l)*np.pi/180., np.array(b)*np.pi/180.)
plt.show()
Thank you very much in advance for your help.
Great question! I've written a short function to convert a catalogue into a HEALPix map of number counts:
from astropy.coordinates import SkyCoord
import healpy as hp
import numpy as np
def cat2hpx(lon, lat, nside, radec=True):
"""
Convert a catalogue to a HEALPix map of number counts per resolution
element.
Parameters
----------
lon, lat : (ndarray, ndarray)
Coordinates of the sources in degree. If radec=True, assume input is in the icrs
coordinate system. Otherwise assume input is glon, glat
nside : int
HEALPix nside of the target map
radec : bool
Switch between R.A./Dec and glon/glat as input coordinate system.
Return
------
hpx_map : ndarray
HEALPix map of the catalogue number counts in Galactic coordinates
"""
npix = hp.nside2npix(nside)
if radec:
eq = SkyCoord(lon, lat, 'icrs', unit='deg')
l, b = eq.galactic.l.value, eq.galactic.b.value
else:
l, b = lon, lat
# conver to theta, phi
theta = np.radians(90. - b)
phi = np.radians(l)
# convert to HEALPix indices
indices = hp.ang2pix(nside, theta, phi)
idx, counts = np.unique(indices, return_counts=True)
# fill the fullsky map
hpx_map = np.zeros(npix, dtype=int)
hpx_map[idx] = counts
return hpx_map
You can then use that to populate the HEALPix map:
l = np.random.uniform(-180, 180, 20000)
b = np.random.uniform(-90, 90, 20000)
hpx_map = hpx.cat2hpx(l, b, nside=32, radec=False)
Here, the nside
determines how fine or coarse your pixel grid is.
hp.mollview(np.log10(hpx_map+1))
Also note that by sampling uniformly in Galactic latitude, you'll prefer data points at the Galactic poles. If you want to avoid that, you can scale that down with a cosine.
hp.orthview(np.log10(hpx_map+1), rot=[0, 90])
hp.graticule(color='white')
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With