I am new to both Haskell and programming. My question about binding in pattern-matched, recursive functions. For instance, suppose I have a function which checks whether a given list (x:xs) is a sublist of another list, (y:ys). My initial thought, following the examples in my textbook, was:
sublist [] ys = True
sublist xs [] = False
sublist (x:xs) (y:ys)
| x == y = sublist xs ys
| x /= y = sublist (x:xs) ys
This works on test data, e.g.,
sublist [1, 2, 3] [1, 2, 4, 1, 2, 3]
where I expected it to fail. I expect it to fail, since
sublist [1, 2, 3] [1, 2, 4, 1, 2, 3]
= sublist [2, 3] [2, 4, 1, 2, 3]
= sublist [3] [4, 1, 2, 3]
at which point, I thought, [3] = 3:[] will be matched with (x:xs) in sublist, and [4, 1, 2, 3] will be matched with (y:ys) in sublist. How, then, is sublist working?
Edit: Thanks to everyone here, I think I've solved my problem. As noted, I was ("subconsciously") wanting sublist to backtrack for me. Using the last answer (BMeph) posted as a guide, I decided to approach the problem differently, in order to solve the "binding problem," i.e., the "backtracking" problem.
subseq :: (Eq a) => [a] -> [a] -> Bool
subseq [] _ = True
subseq _ [] = False
subseq (x:xs) (y:ys) =
-- subseq' decides whether the list bound to (x:xs) = M is a prefix of the list
-- bound to L = (y:ys); it recurses through L and returns a Bool value. subseq
-- recurses through M and L, returning a disjunction of Bool
-- values. Each recursive call to subseq passes M and ys to subseq', which
-- decides whether M is a prefix of the **current list bound to ys**.
let subseq' :: (Eq a) => [a] -> [a] -> Bool
subseq' [] _ = True
subseq' _ [] = False
subseq' (x:xs) (y:ys) = (x == y) && subseq' xs ys
in subseq' (x:xs) (y:ys) || subseq (x:xs) ys
We use pattern matching in Haskell to simplify our codes by identifying specific types of expression. We can also use if-else as an alternative to pattern matching. Pattern matching can also be seen as a kind of dynamic polymorphism where, based on the parameter list, different methods can be executed.
Tail recursion is defined as a recursive function in which the recursive call is the last statement that is executed by the function. So basically nothing is left to execute after the recursion call. For example the following C++ function print() is tail recursive.
Recursive functions play a central role in Haskell, and are used throughout computer science and mathematics generally. Recursion is basically a form of repetition, and we can understand it by making distinct what it means for a function to be recursive, as compared to how it behaves.
Pattern matching is the process of checking whether a specific sequence of characters/tokens/data exists among the given data. Regular programming languages make use of regular expressions (regex) for pattern matching.
It is working because:
[3]
is matched as x:xs
as 3:[]
, [4, 1, 2, 3]
is matched as y:ys
as 4:[1,2,3]
3/=4
so sublist (x:xs) ys
is evaluated, which eventually is Truetrace:
sublist [1, 2, 3] [1, 2, 4, 1, 2, 3]
= sublist [2, 3] [2, 4, 1, 2, 3]
= sublist [3] [4, 1, 2, 3]
= sublist [3] [1, 2, 3]
= sublist [3] [2, 3]
= sublist [3] [3]
= sublist [] [] = True
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With