Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Group and average NumPy matrix

Say I have an arbitrary numpy matrix that looks like this:

arr = [[  6.0   12.0   1.0]
       [  7.0   9.0   1.0]
       [  8.0   7.0   1.0]
       [  4.0   3.0   2.0]
       [  6.0   1.0   2.0]
       [  2.0   5.0   2.0]
       [  9.0   4.0   3.0]
       [  2.0   1.0   4.0]
       [  8.0   4.0   4.0]
       [  3.0   5.0   4.0]]

What would be an efficient way of averaging rows that are grouped by their third column number?

The expected output would be:

result = [[  7.0  9.33  1.0]
          [  4.0  3.0  2.0]
          [  9.0  4.0  3.0]
          [  4.33  3.33  4.0]]
like image 896
Algorithm Avatar asked Mar 27 '15 00:03

Algorithm


2 Answers

A compact solution is to use numpy_indexed (disclaimer: I am its author), which implements a fully vectorized solution:

import numpy_indexed as npi
npi.group_by(arr[:, 2]).mean(arr)
like image 160
Eelco Hoogendoorn Avatar answered Oct 19 '22 04:10

Eelco Hoogendoorn


You can do:

for x in sorted(np.unique(arr[...,2])):
    results.append([np.average(arr[np.where(arr[...,2]==x)][...,0]), 
                    np.average(arr[np.where(arr[...,2]==x)][...,1]),
                    x])

Testing:

>>> arr
array([[  6.,  12.,   1.],
       [  7.,   9.,   1.],
       [  8.,   7.,   1.],
       [  4.,   3.,   2.],
       [  6.,   1.,   2.],
       [  2.,   5.,   2.],
       [  9.,   4.,   3.],
       [  2.,   1.,   4.],
       [  8.,   4.,   4.],
       [  3.,   5.,   4.]])
>>> results=[]
>>> for x in sorted(np.unique(arr[...,2])):
...     results.append([np.average(arr[np.where(arr[...,2]==x)][...,0]), 
...                     np.average(arr[np.where(arr[...,2]==x)][...,1]),
...                     x])
... 
>>> results
[[7.0, 9.3333333333333339, 1.0], [4.0, 3.0, 2.0], [9.0, 4.0, 3.0], [4.333333333333333, 3.3333333333333335, 4.0]]

The array arr does not need to be sorted, and all the intermediate arrays are views (ie, not new arrays of data). The average is calculated efficiently directly from those views.

like image 6
dawg Avatar answered Oct 19 '22 02:10

dawg