I am looking for a way to dynamically select the correct dependency during runtime using google guice.
My usecase is a kotlin application which can work with either sqlite or h2 databases depending on the configuration file provided.
The file is read when the application is executed and if the database is not found, the correct one is created and migrated into.
My database structure contains the Database
(Interface), H2Database: Database
, SQLiteDatabase: Database
and the module binding class which looks like this:
class DatabaseModule: KotlinModule() {
override fun configure() {
bind<Database>().annotatedWith<configuration.H2>().to<H2Database>()
bind<Database>().annotatedWith<configuration.SQLite>().to<SQLiteDatabase>()
}
}
So far, with SQlite alone, I would simply request the dependency using:
@Inject
@SQLite
private lateinit var database: Database
How would I make this selection during runtime?
Without knowing too much about the specific of your code, I'll offer three general approaches.
(Also, I have never used Kotlin. I hope Java samples are enough for you to figure things out.)
It sounds like you need some non-trivial logic to determine which Database implementation is the right one to use. This is a classic case for a ProviderBinding. Instead binding Database
to a specific implementation, you bind Database
to a class that is responsible providing instances (a Provider). For example, you might have this class:
public class MyDatabaseProvider.class implements Provider<Database> {
@Inject
public MyDatabaseProvider.class(Provider<SQLiteDatabase> sqliteProvider, Provider<H2Database> h2Provider) {
this.sqliteProvider = sqliteProvider;
this.h2Provider = h2Provider;
}
public Database get() {
// Logic to determine database type goes here
if (isUsingSqlite) {
return sqliteProvider.get();
} else if (isUsingH2) {
return h2Provider.get();
} else {
throw new ProvisionException("Could not determine correct database implementation.");
}
}
}
(Side note: This sample code gets you a new instance every time. It is fairly straightforward to make this also return a singleton instance.)
Then, to use it, you have two options. In your module, you would bind Database
not to a specific implementation, but to your DatabaseProvider
. Like this:
protected void configure() {
bind(Database.class).toProvider(MyDatabaseProvider.class);
}
The advantage of this approach is that you don't need to know the correct database implementation until Guice tries to construct an object that requires Database
as one of its constructor args.
You could create a DatabaseRoutingProxy
class which implements Database
and then delegates to the correct database implementation. (I've used this pattern professionally. I don't think there's an "official" name for this design pattern, but you can find a discussion here.) This approach is based on lazy loading with Provider
using the Providers that Guice automatically creates(1) for every bound type.
public class DatabaseRoutingProxy implements Database {
private Provider<SqliteDatabse> sqliteDatabaseProvider;
private Provider<H2Database> h2DatabaseProvider;
@Inject
public DatabaseRoutingProxy(Provider<SqliteDatabse> sqliteDatabaseProvider, Provider<H2Database> h2DatabaseProvider) {
this.sqliteDatabaseProvider = sqliteDatabaseProvider;
this.h2DatabaseProvider = h2DatabaseProvider;
}
// Not an overriden method
private Database getDatabase() {
boolean isSqlite = // ... decision logic, or maintain a decision state somewhere
// If these providers don't return singletons, then you should probably write some code
// to call the provider once and save the result for future use.
if (isSqlite) {
return sqliteDatabaseProvider.get();
} else {
return h2DatabaseProvider.get();
}
}
@Override
public QueryResult queryDatabase(QueryInput queryInput) {
return getDatabase().queryDatabase(queryInput);
}
// Implement rest of methods here, delegating as above
}
And in your Guice module:
protected void configure() {
bind(Database.class).to(DatabaseRoutingProxy.class);
// Bind these just so that Guice knows about them. (This might not actually be necessary.)
bind(SqliteDatabase.class);
bind(H2Database.class);
}
The advantage of this approach is that you don't need to be able to know which database implementation to use until you actually make a database call.
Both of these approaches have been assuming that you cannot instantiate an instance of H2Database or SqliteDatabase unless the backing database file actually exists. If it's possible to instantiate the object without the backing database file, then your code becomes much simpler. (Just have a router/proxy/delegator/whatever that takes the actual Database
instances as the constructor args.)
This approach is completely different then the last two. It seems to me like your code is actually dealing with two questions:
If you can solve question 1 before even creating the guice injector that needs to know the answer to question 2, then you don't need to do anything complicated. You can just have a database module like this:
public class MyDatabaseModule extends AbstractModule {
public enum DatabaseType {
SQLITE,
H2
}
private DatabaseType databaseType;
public MyDatabaseModule(DatabaseType databaseType) {
this.databaseType = databaseType;
}
protected void configure() {
if (SQLITE.equals(databaseType)) {
bind(Database.class).to(SqliteDatabase.class);
} else if (H2.equals(databaseType)) {
bind(Database.class).to(H2Database.class);
}
}
}
Since you've separated out questions 1 & 2, when you create the injector that will use the MyDatabaseModule
, you can pass in the appropriate value for the constructor argument.
Notes
Provider<T>
for every binding T
. I have successfully created bindings without creating the corresponding provider, therefore Guice must be automatically creating a Provider for configured bindings. (Edit: I found more documentation that states this more clearly.)If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With