Following is the python script to generate a plot using matplotlib.
#!/usr/bin/python
import matplotlib.pyplot as plt
import time
import numpy as np
from scipy.interpolate import spline
# Local variables
x = []
y = []
# Open the data file for reading lines
datafile = open('testdata1.txt', 'r')
sepfile = datafile.read().split('\n')
datafile.close()
# Create a canvas to place the subgraphs
canvas = plt.figure()
rect = canvas.patch
rect.set_facecolor('white')
# Iterate through the lines and parse them
for datapair in sepfile:
if datapair:
xypair = datapair.split(' ')
x.append(int(xypair[1]))
y.append(int(xypair[3]))
# Define the matrix of 1x1 to place subplots
# Placing the plot1 on 1x1 matrix, at pos 1
sp1 = canvas.add_subplot(1,1,1, axisbg='w')
sp1.plot(x, y, 'red', linewidth=2)
# Colorcode the tick tabs
sp1.tick_params(axis='x', colors='red')
sp1.tick_params(axis='y', colors='red')
# Colorcode the spine of the graph
sp1.spines['bottom'].set_color('r')
sp1.spines['top'].set_color('r')
sp1.spines['left'].set_color('r')
sp1.spines['right'].set_color('r')
# Put the title and labels
sp1.set_title('matplotlib example 1', color='red')
sp1.set_xlabel('matplot x label', color='red')
sp1.set_ylabel('matplot y label', color='red')
# Show the plot/image
plt.tight_layout()
plt.grid(alpha=0.8)
plt.savefig("example6.eps")
plt.show()
It generates the plot as
I am trying to generate a SMOOTH graph instead of lines, but failed to achieve the result. I was trying to follow this video: https://www.youtube.com/watch?v=uSB8UBrbMfk
Can someone please suggest me changes?
Fit smoothing splines in the Curve Fitter app or with the fit function to create a smooth curve through data and specify the smoothness. Fit smooth surfaces to your data in the Curve Fitter app or with the fit function using Lowess models.
I got this working! Thanks for the comments. Here is the updated code.
#!/usr/bin/python
import matplotlib.pyplot as plt
import time
import numpy as np
from scipy.interpolate import spline
# Local variables
x = []
y = []
# Open the data file for reading lines
datafile = open('testdata1.txt', 'r')
sepfile = datafile.read().split('\n')
datafile.close()
# Create a canvas to place the subgraphs
canvas = plt.figure()
rect = canvas.patch
rect.set_facecolor('white')
# Iterate through the lines and parse them
for datapair in sepfile:
if datapair:
xypair = datapair.split(' ')
x.append(int(xypair[1]))
y.append(int(xypair[3]))
x_sm = np.array(x)
y_sm = np.array(y)
x_smooth = np.linspace(x_sm.min(), x_sm.max(), 200)
y_smooth = spline(x, y, x_smooth)
# Define the matrix of 1x1 to place subplots
# Placing the plot1 on 1x1 matrix, at pos 1
sp1 = canvas.add_subplot(1,1,1, axisbg='w')
#sp1.plot(x, y, 'red', linewidth=2)
sp1.plot(x_smooth, y_smooth, 'red', linewidth=1)
# Colorcode the tick tabs
sp1.tick_params(axis='x', colors='red')
sp1.tick_params(axis='y', colors='red')
# Colorcode the spine of the graph
sp1.spines['bottom'].set_color('r')
sp1.spines['top'].set_color('r')
sp1.spines['left'].set_color('r')
sp1.spines['right'].set_color('r')
# Put the title and labels
sp1.set_title('matplotlib example 1', color='red')
sp1.set_xlabel('matplot x label', color='red')
sp1.set_ylabel('matplot y label', color='red')
# Show the plot/image
plt.tight_layout()
plt.grid(alpha=0.8)
plt.savefig("example6.eps")
plt.show()
New plot looks like this.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With