Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Generate image from an unorganized Point Cloud in PCL

I have an unorganized point cloud of the scene. Below is a screenshot of the point cloud-

a screenshot of the point cloud

I want to compose an image from this point cloud. Below is the code snippet-

#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <opencv2/opencv.hpp>

int main(int argc, char** argv)
{
    pcl::PointCloud<pcl::PointXYZRGBA>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZRGBA>);
    pcl::io::loadPCDFile("file.pcd", *cloud);

    cv::Mat image = cv::Mat(cloud->height, cloud->width, CV_8UC3);
    for (int i = 0; i < image.rows; i++)
    {
        for (int j = 0; j < image.cols; j++)
        {
            pcl::PointXYZRGBA point = cloud->at(j, i);
            image.at<cv::Vec3b>(i, j)[0] = point.b;
            image.at<cv::Vec3b>(i, j)[1] = point.g;
            image.at<cv::Vec3b>(i, j)[2] = point.r;
        }
    }
    cv::imwrite("image.png", image);

    return (0);
}

The PCD file can be found here. The above code throws following error at runtime-

terminate called after throwing an instance of 'pcl::IsNotDenseException'
  what():  : Can't use 2D indexing with a unorganized point cloud

Since the cloud is unorganized, the HEIGHT field is 1. This makes me confused while defining the dimensions of the image.

Questions

  1. How to compose an image from an unorganized point cloud?
  2. How to convert pixels located in composed image back to point cloud (3D space)?

PS: I am using PCL 1.7 in Ubuntu 14.04 LTS OS.

like image 412
Ravi Joshi Avatar asked Apr 09 '18 10:04

Ravi Joshi


2 Answers

What Unorganized point cloud means is that the points are NOT assigned to a fixed (organized) grid, therefore ->at(j, i) can't be used (height is always 1, and the width is just the size of the cloud.

If you want to generate an image from your cloud, I suggest the following process:

  1. Project the point cloud to a plane.
  2. Generate a grid (organized point cloud) on that plane.
  3. Interpolate the colors from the unorganized cloud to the grid (organized cloud).
  4. Generate image from your organized grid (your initial attempt).

To be able to convert back to 3D:

  • When projecting to the plane save the "projection vectors" (vector from original point to the projected point).
  • Interpolate that as well to the grid.

methods for creating the grid:

Project the point cloud to a plane (unorganized cloud), and optionally save the reconstruction information in the normals:

pcl::PointCloud<pcl::PointXYZINormal>::Ptr ProjectToPlane(pcl::PointCloud<pcl::PointXYZINormal>::Ptr cloud, Eigen::Vector3f origin, Eigen::Vector3f axis_x, Eigen::Vector3f axis_y)
    {
        PointCloud<PointXYZINormal>::Ptr aux_cloud(new PointCloud<PointXYZINormal>);
        copyPointCloud(*cloud, *aux_cloud);

    auto normal = axis_x.cross(axis_y);
    Eigen::Hyperplane<float, 3> plane(normal, origin);

    for (auto itPoint = aux_cloud->begin(); itPoint != aux_cloud->end(); itPoint++)
    {
        // project point to plane
        auto proj = plane.projection(itPoint->getVector3fMap());
        itPoint->getVector3fMap() = proj;
        // optional: save the reconstruction information as normals in the projected cloud
        itPoint->getNormalVector3fMap() = itPoint->getVector3fMap() - proj;
    }
return aux_cloud;
}

Generate a grid based on an origin point and two axis vectors (length and image_size can either be predetermined as calculated from your cloud):

pcl::PointCloud<pcl::PointXYZINormal>::Ptr GenerateGrid(Eigen::Vector3f origin, Eigen::Vector3f axis_x , Eigen::Vector3f axis_y, float length, int image_size)
{
    auto step = length / image_size;

    pcl::PointCloud<pcl::PointXYZINormal>::Ptr image_cloud(new pcl::PointCloud<pcl::PointXYZINormal>(image_size, image_size));
    for (auto i = 0; i < image_size; i++)
        for (auto j = 0; j < image_size; j++)
        {
            int x = i - int(image_size / 2);
            int y = j - int(image_size / 2);
            image_cloud->at(i, j).getVector3fMap() = center + (x * step * axisx) + (y * step * axisy);
        }

    return image_cloud;
}

Interpolate to an organized grid (where the normals store reconstruction information and the curvature is used as a flag to indicate empty pixel (no corresponding point):

void InterpolateToGrid(pcl::PointCloud<pcl::PointXYZINormal>::Ptr cloud, pcl::PointCloud<pcl::PointXYZINormal>::Ptr grid, float max_resolution, int max_nn_to_consider)
{   
    pcl::search::KdTree<pcl::PointXYZINormal>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZINormal>);
    tree->setInputCloud(cloud);

    for (auto idx = 0; idx < grid->points.size(); idx++)
    {
        std::vector<int> indices;
        std::vector<float> distances;
        if (tree->radiusSearch(grid->points[idx], max_resolution, indices, distances, max_nn_to_consider) > 0)
        {
            // Linear Interpolation of:
            //      Intensity
            //      Normals- residual vector to inflate(recondtruct) the surface
            float intensity(0);
            Eigen::Vector3f n(0, 0, 0);
            float weight_factor = 1.0F / accumulate(distances.begin(), distances.end(), 0.0F);
            for (auto i = 0; i < indices.size(); i++)
            {
                float w = weight_factor * distances[i];
                intensity += w * cloud->points[indices[i]].intensity;
                auto res = cloud->points[indices[i]].getVector3fMap() - grid->points[idx].getVector3fMap();
                n += w * res;
            }
            grid->points[idx].intensity = intensity;
            grid->points[idx].getNormalVector3fMap() = n;
            grid->points[idx].curvature = 1;
        }
        else
        {
            grid->points[idx].intensity = 0;
            grid->points[idx].curvature = 0;
            grid->points[idx].getNormalVector3fMap() = Eigen::Vector3f(0, 0, 0);
        }
    }
}

Now you have a grid (an organized cloud), which you can easily map to an image. Any changes you make to the images, you can map back to the grid, and use the normals to project back to your original point cloud.

usage example for creating the grid:

pcl::PointCloud<pcl::PointXYZINormal>::Ptr original_cloud = ...;

// reference frame for the projection
// e.g. take XZ plane around 0,0,0 of length 100 and map to 128*128 image
Eigen::Vector3f origin = Eigen::Vector3f(0,0,0);
Eigen::Vector3f axis_x = Eigen::Vector3f(1,0,0);
Eigen::Vector3f axis_y = Eigen::Vector3f(0,0,1);
float length    = 100
int image_size  = 128

auto aux_cloud = ProjectToPlane(original_cloud, origin, axis_x, axis_y);
// aux_cloud now contains the points of original_cloud, with:
//      xyz coordinates projected to XZ plane
//      color (intensity) of the original_cloud (remains unchanged)
//      normals - we lose the normal information, as we use this field to save the projection information. if you wish to keep the normal data, you should define a custom PointType. 
// note: for the sake of projection, the origin is only used to define the plane, so any arbitrary point on the plane can be used


auto grid = GenerateGrid(origin, axis_x , axis_y, length, image_size)
// organized cloud that can be trivially mapped to an image

float max_resolution = 2 * length / image_size;
int max_nn_to_consider = 16;
InterpolateToGrid(aux_cloud, grid, max_resolution, max_nn_to_consider);
// Now you have a grid (an organized cloud), which you can easily map to an image. Any changes you make to the images, you can map back to the grid, and use the normals to project back to your original point cloud.

additional helper methods for how I use the grid:

// Convert an Organized cloud to cv::Mat (an image and a mask)
//      point Intensity is used for the image
//          if as_float is true => take the raw intensity (image is CV_32F)
//          if as_float is false => assume intensity is in range [0, 255] and round it (image is CV_8U)
//      point Curvature is used for the mask (assume 1 or 0)
std::pair<cv::Mat, cv::Mat> ConvertGridToImage(pcl::PointCloud<pcl::PointXYZINormal>::Ptr grid, bool as_float)
{   
    int rows = grid->height;
    int cols = grid->width;

    if ((rows <= 0) || (cols <= 0)) 
        return pair<Mat, Mat>(Mat(), Mat());

    // Initialize

    Mat image = Mat(rows, cols, as_float? CV_32F : CV_8U);
    Mat mask  = Mat(rows, cols, CV_8U);

    if (as_float)
    {
        for (int y = 0; y < image.rows; y++)
        {
            for (int x = 0; x < image.cols; x++)
            {
                image.at<float>(y, x) = grid->at(x, image.rows - y - 1).intensity;
                mask.at<uchar>(y, x) = 255 * grid->at(x, image.rows - y - 1).curvature;
            }
        }
    }
    else
    {
        for (int y = 0; y < image.rows; y++)
        {
            for (int x = 0; x < image.cols; x++)
            {
                image.at<uchar>(y, x) = (int)round(grid->at(x, image.rows - y - 1).intensity);
                mask.at<uchar>(y, x) = 255 * grid->at(x, image.rows - y - 1).curvature;
            }
        }
    }

    return pair<Mat, Mat>(image, mask);
}

// project image to cloud (using the grid data)
// organized - whether the resulting cloud should be an organized cloud
pcl::PointCloud<pcl::PointXYZI>::Ptr BackProjectImage(cv::Mat image, pcl::PointCloud<pcl::PointXYZINormal>::Ptr grid, bool organized)
{
    if ((image.size().height != grid->height) || (image.size().width != grid->width))
    {
        assert(false);
        throw;
    }

    PointCloud<PointXYZI>::Ptr cloud(new PointCloud<PointXYZI>);
    cloud->reserve(grid->height * grid->width);

    // order of iteration is critical for organized target cloud
    for (auto r = image.size().height - 1; r >= 0; r--)
    {
        for (auto c = 0; c < image.size().width; c++)
        {
            PointXYZI point;
            auto mask_value = mask.at<uchar>(image.rows - r - 1, c);
            if (mask_value > 0) // valid pixel
            {
                point.intensity = mask_value;
                point.getVector3fMap() = grid->at(c, r).getVector3fMap() + grid->at(c, r).getNormalVector3fMap();
            }
            else // invalid pixel
            {
                if (organized)
                {
                    point.intensity = 0;
                    point.x = numeric_limits<float>::quiet_NaN();
                    point.y = numeric_limits<float>::quiet_NaN();
                    point.z = numeric_limits<float>::quiet_NaN();
                }
                else
                {
                    continue;
                }
            }

            cloud->push_back(point);
        }
    }

    if (organized)
    {
        cloud->width = grid->width;
        cloud->height = grid->height;
    }

    return cloud;
}

usage example for working with the grid:

// image_mask is std::pair<cv::Mat, cv::Mat>
auto image_mask = ConvertGridToImage(grid, false);

...
do some work with the image/mask
...

auto new_cloud = BackProjectImage(image_mask.first, grid, false);
like image 77
Mark Loyman Avatar answered Nov 14 '22 10:11

Mark Loyman


For an unorganized point cloud, height and width have different meanings as you may have noticed. http://pointclouds.org/documentation/tutorials/basic_structures.php

It is not as simple to convert an unorganized point cloud to an image, as the points are represented as floats and there is no defined perspective. However, you can work around that by determining a perspective and creating discrete bins for the points. A similar question and answer can be found here: Converting a pointcloud to a depth/multi channel image

like image 45
brad Avatar answered Nov 14 '22 11:11

brad