Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Fourier Domain - have I got my theory/terminology right? [closed]

In terms of images.

Fourier transform converts spatial to frequency (Fourier) domain. DC value = average of sinusoids (sine waves), F(0,0) and average brightness/graylevel of image. Fourier has a complex number output....you can get the [magnitude and phase] or [real and imaginary] outputs.

What I don't get is what the complex number output actually represents when you do FFT? I know an image in the fourier domain is the sum of weighted sine waves but what does the output actually mean.

What is spatial frequency? When I look at definitions it states it as the rate of change of pixel values., what does this mean?

like image 459
Cheetah Avatar asked May 04 '11 22:05

Cheetah


2 Answers

The complex number outputs give you the magnitude and phase of the different fourier basis vectors/signals.

In the case of a onedimensional signal, e.g. audio, these basis vectors are complex sinusoids, spinning around the unit circle with different (spatial) frequencies (which are integer multiples of the fundamental frequency) as time advances.

Complex Sinusoid

In the case of an image the basis vectors are twodimensional (complex) planewaves. Now the components can also have different directions. So every pixel in fourier space equals a specific combination of direction and frequency. Put simply, the direction and frequency of a planewave in the spatial domain starting in the upper left corner finishes one full period by the time it reaches the position of the corresponding fourier domain pixel (in the most direct way).

Complex planewave

To model a real-valued sinewave or planewave, two complex basis vectors with frequencies of the same magnitude but negative frequency are superimposed so that their imaginary parts cancel.

Complex planewave with two fourier components, which causes cancellation of imaginary parts

like image 129
Thies Heidecke Avatar answered Sep 29 '22 03:09

Thies Heidecke


So you can visualise it better if you parameterise the complex number information to a magnitude and phase value, it respresents the magnitude of the frequency component and phase gives you the position of the component in the image.

Spatial frequency typically refers to change in intensity value when you traverse across pixels. So an edge in your image would have a high spatial frequency due to the sharp change in pixel values

like image 44
jajo87 Avatar answered Sep 29 '22 04:09

jajo87