I am trying to fit a curve over the histogram of a Poisson distribution that looks like this
I have modified the fit function so that it resembles a Poisson distribution, with the parameter t as a variable. But the curve_fit function can not be plotted and I am not sure why.
def histo(bsize):
N = bsize
#binwidth
bw = (dt.max()-dt.min())/(N-1.)
bin1 = dt.min()+ bw*np.arange(N)
#define the array to hold the occurrence count
bincount= np.array([])
for bin in bin1:
count = np.where((dt>=bin)&(dt<bin+bw))[0].size
bincount = np.append(bincount,count)
#bin center
binc = bin1+0.5*bw
plt.figure()
plt.plot(binc,bincount,drawstyle= 'steps-mid')
plt.xlabel("Interval[ticks]")
plt.ylabel("Frequency")
histo(30)
plt.xlim(0,.5e8)
plt.ylim(0,25000)
import numpy as np
from scipy.optimize import curve_fit
delta_t = 1.42e7
def func(x, t):
return t * np.exp(- delta_t/t)
popt, pcov = curve_fit(func, np.arange(0,.5e8),histo(30))
plt.plot(popt)
In order to fit the Poisson distribution, we must estimate a value for λ from the observed data. Since the average count in a 10-second interval was 8.392, we take this as an estimate of λ (recall that the E(X) = λ) and denote it by ˆλ.
Just find the mean and the standard deviation, and plug them into the formula for the normal (aka Gaussian) distribution (en.wikipedia.org/wiki/Normal_distribution). The mean of a histogram is sum( value*frequency for value,frequency in h )/sum( frequency for _,frequency in h ) .
The Poisson distribution describes the probability of obtaining k successes during a given time interval. If a random variable X follows a Poisson distribution, then the probability that X = k successes can be found by the following formula: P(X=k) = λk * e–λ / k!
The problem with your code is that you do not know what the return values of curve_fit
are. It is the parameters for the fit-function and their covariance matrix - not something you can plot directly.
In general you can get everything much, much more easily:
import numpy as np import matplotlib.pyplot as plt from scipy.optimize import curve_fit from scipy.special import factorial from scipy.stats import poisson # get poisson deviated random numbers data = np.random.poisson(2, 1000) # the bins should be of integer width, because poisson is an integer distribution bins = np.arange(11) - 0.5 entries, bin_edges, patches = plt.hist(data, bins=bins, density=True, label='Data') # calculate bin centres bin_middles = 0.5 * (bin_edges[1:] + bin_edges[:-1]) def fit_function(k, lamb): '''poisson function, parameter lamb is the fit parameter''' return poisson.pmf(k, lamb) # fit with curve_fit parameters, cov_matrix = curve_fit(fit_function, bin_middles, entries) # plot poisson-deviation with fitted parameter x_plot = np.arange(0, 15) plt.plot( x_plot, fit_function(x_plot, *parameters), marker='o', linestyle='', label='Fit result', ) plt.legend() plt.show()
This is the result:
An even better possibility would be to not use a histogram at all and instead to carry out a maximum-likelihood fit.
But by closer examination even this is unnecessary, because the maximum-likelihood estimator for the parameter of the poissonian distribution is the arithmetic mean.
However, if you have other, more complicated PDFs, you can use this as example:
import numpy as np import matplotlib.pyplot as plt from scipy.optimize import minimize from scipy.special import factorial from scipy import stats def poisson(k, lamb): """poisson pdf, parameter lamb is the fit parameter""" return (lamb**k/factorial(k)) * np.exp(-lamb) def negative_log_likelihood(params, data): """ The negative log-Likelihood-Function """ lnl = - np.sum(np.log(poisson(data, params[0]))) return lnl def negative_log_likelihood(params, data): ''' better alternative using scipy ''' return -stats.poisson.logpmf(data, params[0]).sum() # get poisson deviated random numbers data = np.random.poisson(2, 1000) # minimize the negative log-Likelihood result = minimize(negative_log_likelihood, # function to minimize x0=np.ones(1), # start value args=(data,), # additional arguments for function method='Powell', # minimization method, see docs ) # result is a scipy optimize result object, the fit parameters # are stored in result.x print(result) # plot poisson-distribution with fitted parameter x_plot = np.arange(0, 15) plt.plot( x_plot, stats.poisson.pmf(x_plot, *parameters), marker='o', linestyle='', label='Fit result', ) plt.legend() plt.show()
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With