I have many large (>35,000,000) lists of integers that will contain duplicates. I need to get a count for each integer in a list. The following code works, but seems slow. Can anyone else better the benchmark using Python and preferably NumPy?
def group(): import numpy as np from itertools import groupby values = np.array(np.random.randint(0,1<<32, size=35000000), dtype='u4') values.sort() groups = ((k, len(list(g))) for k,g in groupby(values)) index = np.fromiter(groups, dtype='u4,u2') if __name__=='__main__': from timeit import Timer t = Timer("group()","from __main__ import group") print t.timeit(number=1)
which returns:
$ python bench.py 111.377498865
Based on responses:
def group_original(): import numpy as np from itertools import groupby values = np.array(np.random.randint(0, 1<<32, size=35000000), dtype='u4') values.sort() groups = ((k, len(list(g))) for k,g in groupby(values)) index = np.fromiter(groups, dtype='u4,u2') def group_gnibbler(): import numpy as np from itertools import groupby values = np.array(np.random.randint(0, 1<<32, size=35000000), dtype='u4') values.sort() groups = ((k,sum(1 for i in g)) for k,g in groupby(values)) index = np.fromiter(groups, dtype='u4,u2') def group_christophe(): import numpy as np values = np.array(np.random.randint(0, 1<<32, size=35000000), dtype='u4') values.sort() counts=values.searchsorted(values, side='right') - values.searchsorted(values, side='left') index = np.zeros(len(values), dtype='u4,u2') index['f0'] = values index['f1'] = counts # Erroneous result! def group_paul(): import numpy as np values = np.array(np.random.randint(0, 1<<32, size=35000000), dtype='u4') values.sort() diff = np.concatenate(([1], np.diff(values))) idx = np.concatenate((np.where(diff)[0], [len(values)])) index = np.empty(len(idx)-1, dtype='u4,u2') index['f0'] = values[idx[:-1]] index['f1'] = np.diff(idx) if __name__=='__main__': from timeit import Timer timings=[ ("group_original", "Original"), ("group_gnibbler", "Gnibbler"), ("group_christophe", "Christophe"), ("group_paul", "Paul"), ] for method,title in timings: t = Timer("%s()"%method,"from __main__ import %s"%method) print "%s: %s secs"%(title, t.timeit(number=1))
which returns:
$ python bench.py Original: 113.385262966 secs Gnibbler: 71.7464978695 secs Christophe: 27.1690568924 secs Paul: 9.06268405914 secs
Although Christophe gives incorrect results currently.
I get a three times improvement doing something like this:
def group(): import numpy as np values = np.array(np.random.randint(0, 3298, size=35000000), dtype='u4') values.sort() dif = np.ones(values.shape, values.dtype) dif[1:] = np.diff(values) idx = np.where(dif>0) vals = values[idx] count = np.diff(idx)
More than 5 years have passed since Paul's answer was accepted. Interestingly, the sort()
is still the bottleneck in the accepted solution.
Line # Hits Time Per Hit % Time Line Contents ============================================================== 3 @profile 4 def group_paul(): 5 1 99040 99040.0 2.4 import numpy as np 6 1 305651 305651.0 7.4 values = np.array(np.random.randint(0, 2**32,size=35000000),dtype='u4') 7 1 2928204 2928204.0 71.3 values.sort() 8 1 78268 78268.0 1.9 diff = np.concatenate(([1],np.diff(values))) 9 1 215774 215774.0 5.3 idx = np.concatenate((np.where(diff)[0],[len(values)])) 10 1 95 95.0 0.0 index = np.empty(len(idx)-1,dtype='u4,u2') 11 1 386673 386673.0 9.4 index['f0'] = values[idx[:-1]] 12 1 91492 91492.0 2.2 index['f1'] = np.diff(idx)
The accepted solution runs for 4.0 s on my machine, with radix sort it drops down to 1.7 s.
Just by switching to radix sort, I get an overall 2.35x speedup. The radix sort is more than 4x faster than quicksort in this case.
See How to sort an array of integers faster than quicksort? that was motivated by your question.
For the profiling I used line_profiler and kernprof (the @profile
comes from there).
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With