Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

NumPy grouping using itertools.groupby performance

I have many large (>35,000,000) lists of integers that will contain duplicates. I need to get a count for each integer in a list. The following code works, but seems slow. Can anyone else better the benchmark using Python and preferably NumPy?

def group():     import numpy as np     from itertools import groupby     values = np.array(np.random.randint(0,1<<32, size=35000000), dtype='u4')     values.sort()     groups = ((k, len(list(g))) for k,g in groupby(values))     index = np.fromiter(groups, dtype='u4,u2')  if __name__=='__main__':     from timeit import Timer     t = Timer("group()","from __main__ import group")     print t.timeit(number=1) 

which returns:

$ python bench.py 111.377498865 

Based on responses:

def group_original():     import numpy as np     from itertools import groupby     values = np.array(np.random.randint(0, 1<<32, size=35000000), dtype='u4')     values.sort()     groups = ((k, len(list(g))) for k,g in groupby(values))     index = np.fromiter(groups, dtype='u4,u2')  def group_gnibbler():     import numpy as np     from itertools import groupby     values = np.array(np.random.randint(0, 1<<32, size=35000000), dtype='u4')     values.sort()     groups = ((k,sum(1 for i in g)) for k,g in groupby(values))     index = np.fromiter(groups, dtype='u4,u2')  def group_christophe():     import numpy as np     values = np.array(np.random.randint(0, 1<<32, size=35000000), dtype='u4')     values.sort()     counts=values.searchsorted(values, side='right') - values.searchsorted(values, side='left')     index = np.zeros(len(values), dtype='u4,u2')     index['f0'] = values     index['f1'] = counts     # Erroneous result!  def group_paul():     import numpy as np     values = np.array(np.random.randint(0, 1<<32, size=35000000), dtype='u4')     values.sort()     diff = np.concatenate(([1], np.diff(values)))     idx = np.concatenate((np.where(diff)[0], [len(values)]))     index = np.empty(len(idx)-1, dtype='u4,u2')     index['f0'] = values[idx[:-1]]     index['f1'] = np.diff(idx)  if __name__=='__main__':     from timeit import Timer     timings=[                 ("group_original", "Original"),                 ("group_gnibbler", "Gnibbler"),                 ("group_christophe", "Christophe"),                 ("group_paul", "Paul"),             ]     for method,title in timings:         t = Timer("%s()"%method,"from __main__ import %s"%method)         print "%s: %s secs"%(title, t.timeit(number=1)) 

which returns:

$ python bench.py Original: 113.385262966 secs Gnibbler: 71.7464978695 secs Christophe: 27.1690568924 secs Paul: 9.06268405914 secs 

Although Christophe gives incorrect results currently.

like image 211
Donny Avatar asked Jan 10 '11 21:01

Donny


2 Answers

I get a three times improvement doing something like this:

def group():     import numpy as np     values = np.array(np.random.randint(0, 3298, size=35000000), dtype='u4')     values.sort()     dif = np.ones(values.shape, values.dtype)     dif[1:] = np.diff(values)     idx = np.where(dif>0)     vals = values[idx]     count = np.diff(idx) 
like image 109
Paul Avatar answered Sep 23 '22 08:09

Paul


More than 5 years have passed since Paul's answer was accepted. Interestingly, the sort() is still the bottleneck in the accepted solution.

Line #      Hits         Time  Per Hit   % Time  Line Contents ==============================================================      3                                           @profile      4                                           def group_paul():      5         1        99040  99040.0      2.4      import numpy as np      6         1       305651 305651.0      7.4      values = np.array(np.random.randint(0, 2**32,size=35000000),dtype='u4')      7         1      2928204 2928204.0    71.3      values.sort()      8         1        78268  78268.0      1.9      diff = np.concatenate(([1],np.diff(values)))      9         1       215774 215774.0      5.3      idx = np.concatenate((np.where(diff)[0],[len(values)]))     10         1           95     95.0      0.0      index = np.empty(len(idx)-1,dtype='u4,u2')     11         1       386673 386673.0      9.4      index['f0'] = values[idx[:-1]]     12         1        91492  91492.0      2.2      index['f1'] = np.diff(idx) 

The accepted solution runs for 4.0 s on my machine, with radix sort it drops down to 1.7 s.

Just by switching to radix sort, I get an overall 2.35x speedup. The radix sort is more than 4x faster than quicksort in this case.

See How to sort an array of integers faster than quicksort? that was motivated by your question.


For the profiling I used line_profiler and kernprof (the @profile comes from there).

like image 38
Ali Avatar answered Sep 20 '22 08:09

Ali